Institute of Informatics Eötvös Loránd University Budapest, Hungary

Basic Algorithms for Digital Image Analysis:

a course

Dmitrij Csetverikov

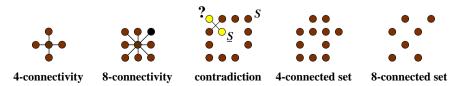
with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó and Levente Hajder

http://visual.ipan.sztaki.hu

Basic notions of digital geometry

Connectivity in digital images:

- 8 neighbours or 4 neighbours: 8-connectivity, 4-connectivity
- Contradiction arises if same type of connectivity is used for object (S) and background (S): pairs of pixels from the two sets may be connected 'across each other'.
- **Solution**: Use different types of connectivity for S and \underline{S}
 - $\,\circ\,$ 8-connectivity in $S \Rightarrow$ 4-connectivity in \underline{S}
 - $\circ\,$ 4-connectivity in $S \Rightarrow$ 8-connectivity in \underline{S}

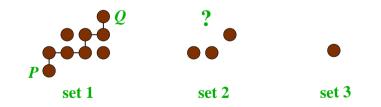


Lecture 11: Binary image processing I

- Basic notions of digital geometry
 - 4-connectivity and 8-connectivity
 - \circ Connected components
 - $\circ~$ Holes and borders
 - Shrinking and expanding
- Image data structures and run-length code (RLC)
- RLC-based connected component analysis
- Skeletal representation
 - \circ Medial axis
 - Distance transform and medial axis
 - Thinning and skeleton
 - Summary of skeletal representation

2

Definition: Let S be a set of pixels and pixels $P, Q \in S$. P is **connected to** Q if there exists a sequence of pixels $P = P_0, P_1, \ldots, P_n = Q$, $P_i \in S$, such that P_i is a neighbour of P_{i-1} , $i \in [1, n]$.

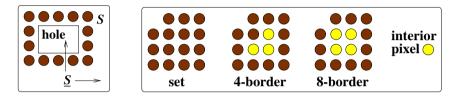


Connected pixels and sets. Set 2 is only connected for 8-connectivity.

- Relation 'is connected to' is reflexive, symmetric and transitive
- \Rightarrow It is a relation of **equivalence**
- $\Rightarrow\,$ It partitions the image into connected components
- Connected components are the maximal connected sets of pixels

Definitions:

- Hole in S is a component of \underline{S} surrounded by S.
- Pixel $P \in S$ is called a **border pixel** if it has a neighbour in <u>S</u> in the sense of connectivity used in <u>S</u>.
 - $\circ~$ Otherwise, S is called an interior pixel.



Illustrations to definitions of hole and border.

5

Image data structures and run-length code

Binary image processing: Processing bilevel images using geometric criteria.

Different **image data structures** are used for binary image processing. The data structures differ in data compression and in operations they support.

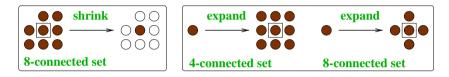
- Original image matrix
- Quadtree (area-based)
- Run-length code (area-based)
- Chain code (contour-based)

Run-length code (RLC):

- A binary image is represented by a set of horizontal **runs**.
- A run is a maximal continuous sequence of object pixels.

Definitions

- $S^{(-1)}$ denotes shrinking of S: delete border of S.
 - $\circ\ S^{(-k)}$ is k-step shrinking of S: repeat shrinking k times.
- $S^{(1)}$ denotes **expanding** of S: interchange the connectivities of S and \underline{S} , then shrink \underline{S} .
 - $\circ\ S^{(k)}$ is k-step expanding of S: repeat expanding k times.

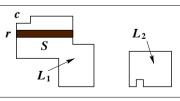


Examples of shrinking and expanding. For 4-connected S, $S^{(-1)}$ is empty: shrinking does not preserve connectivity and may remove objects.

6

Each run ${\boldsymbol R}$ is coded by

- row \boldsymbol{r} and column \boldsymbol{c} of the starting pixel
- length S: number of pixels in the run
- label L: identifies the connected component to which the run belongs



runR: {row r, column c, length S, label L}

Run-length coding. L_1 and L_2 are labels.

An image can be restored from its RLC, labelled or unlabelled.

RLC-based connected component analysis

Connected component analysis: Finding connected components of a binary image.

Different algorithms for connected component analysis exist, based on different data structures. In particular:

- The simplest algorithm is **recursive**: Find next unlabelled pixel in image matrix, spread recursively to neighbours, mark visited pixels by current label.
 - Short: a few lines of code
 - $\circ\,$ Inefficient, or even dangerous, when components are large and recursion is deep
- Chain coding by contour tracing: Described later in this course.
- **RLC-based** connected component analysis: Obtain unlabelled RLC first, then assign a label to each run.

Algorithm 1: Connected component labelling of RLC

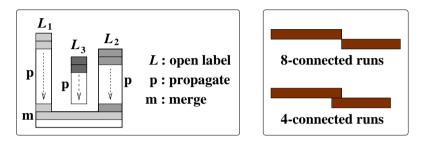
- 1. Select connectivity (8 or 4). Allocate and initialise equivalency table (matrix) $E_{ij} = 0$ if $i \neq j$, $E_{ii} = 1$. Set label counter $N_L = 0$.
- 2. Scan RLC and find the next unlabelled run R(r, c, S). Search the previous row r' = r 1 and find runs R'_k , $k = 1, 2, ..., N_c$, which are **connected to** R. $(R'_k$ are already labelled.)
 - If $N_c = 0$ (no connected runs), open a new label by assigning label N_L to run R, then increment N_L .
 - If $N_c = 1$ and there is single connected run R'_1 with label L'_1 , then propagate label by assigning label L'_1 to run R.
 - If $N_c > 1$, select the smallest of the connected run labels L'_k , L'_s , then merge labels by assigning label L'_s to run R and setting $E_{ks} = 1$ for all k.

Repeat until the end of RLC is reached.

3. Use the final equivalency table E_{ij} to re-label the runs and obtain the true number of connected components.

A typical RLC-based connected component algorithm allocates a **label** equivalency table, inputs unlabelled RLC, and operates in two passes.

- The first pass includes three basic procedures:
 - opening a new label
 - propagating an existing label
 - $\circ\,$ merging the equivalent labels and updating the equivalency table
- The second pass recomputes the labels based on the equivalency table.



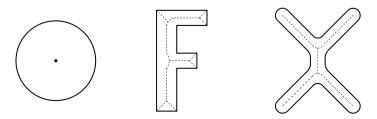
RLC-based connected component analysis.

10

Skeletal representation

Definition: An interior point of a shape belongs to the **medial axis** (MA) of the shape if this point lies at the **same distance** from two or more **nearest contour points**.

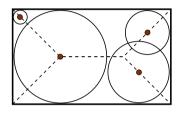
- Medial axis is the **locus** of such points.
- Operation that finds the medial axis of a shape is called **medial axis transform** (MAT).



Examples of medial axes of simple shapes. MA of a disc is its centre. Note that **bisector of each angle** is a branch of MA.

Properties of medial axis

- In continuous case, MA is always a connected set of points.
- MA is a compact and efficient representation of shapes consisting of **elongated** parts, for instance, letters, chromosomes.
- Medial axis is a **regenerative** description if the **distance** is assigned to each point of MA.
- $\,\circ\,$ Then the shape can be restored from its MA as the locus of inscribed circles



Medial axes as the locus of centres of inscribed circles.

13

Distance transform and MAT

The simple algorithm given below

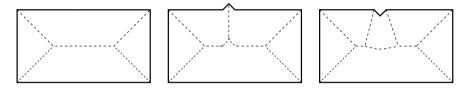
- inputs a binary image u(r, c);
- computes its distance transform $u_{DT}(r,c)$ and its medial axis $u_{MA}(r,c)$.

Comments:

- $u_{DT}(r,c)$ is a greyscale image coding the **distance** from object pixel (r,c) to the nearest background point.
- $u_{MA}(r,c)$ is a binary image.
- We approximate the Euclidean distance is by the city-block distance.
- In practice, finer approximations are used, but principle of operation is the same.

Properties of medial axis (continued)

- MA is very sensitive to small (e.g., noisy) variations of shape.
- Medial axis of shape can be obtained using distance transform (DT) of shape.
 - DT assigns to each point the distance from that point to contour of shape.
 - $\circ\,$ In discrete case, distance to the closest background pixels is used. Different discrete approximations o DT exist.
- MA of discrete shape may be disconnected.



Sensitivity of medial axis to small shape variations.

14

Algorithm 2: Simple discrete DT and MAT

- 1. Select 4-connectivity for object pixels. Denote by $\Delta(r,c;i,j)$ the distance between (r,c) and (i,j). Initalise $u_0(r,c) = u(r,c)$.
- 2. Compute DT recursively for $k = 1, 2, \ldots$ as

$$u_k(r,c) = u_0(r,c) + \min_{i,j} \{u_{k-1}(i,j); (i,j) : \Delta(r,c;i,j) \le 1)\}$$
(1)

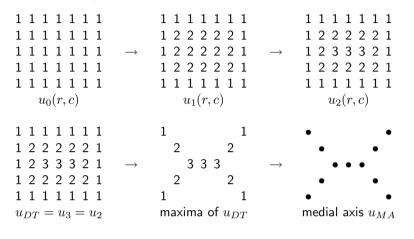
Iterate (1). Stop when no more changes occur: $u_k(r,c) = u_{k-1}(r,c)$ for all r,c. Set $u_{DT}(r,c) = u_k(r,c)$.

3. Compute MAT $u_{MA}(r,c)$ as the set of points

 $\{(r,c): u_{DT}(r,c) \ge u_{DT}(i,j); \Delta(r,c;i,j) \le 1\}$

- DT is finished when k equals half the maximum thickness of the object.
- The MAT procedure can be **reversed** to restore the object from its skeleton if the **distance information** is preserved.

Example of computing DT and MAT:



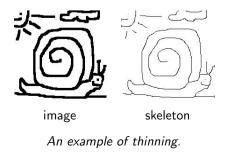
17

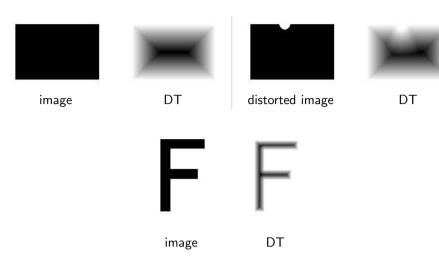
Thinning and skeleton

Thinning is a special kind of iterative shrinking that **preserves topology**. The result of thinning is the **skeleton** of the object.

Definition: ${\cal S}$ is thinned down to a skeleton by successively deleting its border pixels, provided that:

- 1. no such deletion disconnects S;
- 2. the endpoints are not deleted.





In DT images, dark points are large distances from background.

18

A thinning algorithm for 8-connected skeleton

Consider a point P_1 and its 3×3 neighbourhood.

P_3	P_2	P_9
P_4	P_1	P_8
P_5	P_6	P_7

Labelling point P_1 and its neighbours.

Introduce

- $Z0(P_1)$: the number of **zero to nonzero transitions** in the sequence $\{P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9, P_2\}$
 - $Z0(P_1)$ is calculated by **going around** the pixel P_1 .
 - $\circ\,$ This counting operation is also often used to analyse thinned images, for example, to find line endpoints.
- $NZ(P_1)$: the number of nonzero neighbours of P_1

Examples of distance transform

Algorithm 3: Thinning

- 1. Allocate two images, $u_1(r,c)$ and $u_2(r,c)$, of the same size as the input binary image $u_0(r,c)$. Initialise $u_2 = u_1 = u_0$.
- 2. Scan u_1 , delete points in u_2 .
- 3. In each current point P_1 compute $Z0(P_1)$, $NZ(P_1)$, $Z0(P_2)$ and $Z0(P_4)$.
- 4. Delete P_1 if the following conditions are simultaneously satisfied:

$$\left(\begin{array}{c} 2 \leq NZ\left(P_{1}\right) \leq 6 \\ Z0\left(P_{1}\right) = 1 \\ P_{2} \cdot P_{4} \cdot P_{8} = 0 \quad \text{OR} \quad Z0\left(P_{2}\right) \neq 1 \\ P_{2} \cdot P_{4} \cdot P_{6} = 0 \quad \text{OR} \quad Z0\left(P_{4}\right) \neq 1 \end{array} \right.$$

5. When scanning of u_1 is finished, stop if no points were deleted. Otherwise, copy u_2 onto u_1 and go to step 2.

21

Properties of skeleton

- Skeleton is, by definition, a connected set.
- Like medial axis, skeleton is the sum of branches.
 - Skeleton follows shape of object comprised of elongated parts.
 - $\circ\,$ In other cases, relation between object and skeleton may not be that obvious.
- Skeleton is usually similar to medial axis.
- \Rightarrow Often, no distinction between skeleton and MA is made. Thinning and MAT are viewed as alternative ways of obtaining a **skeletal representation** of an object. Then the medial axis is also called 'skeleton'.
- Skeleton **may significantly differ** from MA. (Compare the skeleton and the medial axis of a rectangle.)

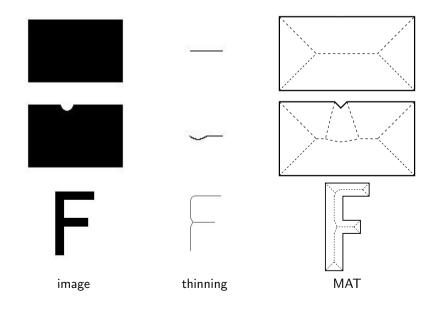
1	1	0	0	0	0	1	0	1
1	P_1	1	1	P_1	0	0	P_1	0
0	0	0	0	0	0	1	1	1
(a)				(b)			(c)	

Examples where $P_1 = 1$ is **not** deletable: (a) deleting P_1 splits region; (b) deleting P_1 shortens line ends; (c) $2 \le NZ(P_1) \le 6$, but P_1 is not deletable.

Comments to the thinning algorithm:

- To compute $Z0(P_2)$ and $Z0(P_4)$, at each point we examine pixels from a 4×4 neighbourhood.
- The neighbourhood is formed and used in an **asymmetric way**: for example, $Z0(P_2)$ and $Z0(P_4)$ are computed, while $Z0(P_6)$ and $Z0(P_8)$ are not.
- This asymmetry allows the algorithm to obtain 1-pixel wide skeletons for lines of **even width**.
- \Rightarrow The result may be slightly (0.5 pixel) shifted wrt the 'true' skeleton.

22



Comparison of thinning and MAT.

Summary of skeletal representation

Advantages of skeletal representation of shape:

- Compresses data.
- Reflects structure of shape.
- Rotation-invariant. (In discrete case, only approximately.)
- Regenerative: Original shape can be restored from skeleton and distance data.

Drawbacks:

- Mainly useful for shapes comprised of elongated parts.
- MAT is sensitive to noise and distortions.

25