

Basic Algorithms for Digital Image Analysis: a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó and Levente Hajder
http://visual.ipan.sztaki.hu

Basic notions of digital geometry

Connectivity in digital images:

- 8 neighbours or 4 neighbours: 8 -connectivity, 4-connectivity
- Contradiction arises if same type of connectivity is used for object (S) and background (\underline{S}): pairs of pixels from the two sets may be connected 'across each other'.
- Solution: Use different types of connectivity for S and \underline{S}
- 8-connectivity in $S \Rightarrow$ 4-connectivity in \underline{S}
- 4-connectivity in $S \Rightarrow 8$-connectivity in \underline{S}

Lecture 11: Binary image processing I

- Basic notions of digital geometry
- 4-connectivity and 8-connectivity
- Connected components
- Holes and borders
- Shrinking and expanding
- Image data structures and run-length code (RLC)
- RLC-based connected component analysis
- Skeletal representation
- Medial axis
- Distance transform and medial axis
- Thinning and skeleton
- Summary of skeletal representation

Definition: Let S be a set of pixels and pixels $P, Q \in S$. P is connected to Q if there exists a sequence of pixels $P=P_{0}, P_{1}, \ldots, P_{n}=Q, P_{i} \in S$, such that P_{i} is a neighbour of $P_{i-1}, i \in[1, n]$.

set 1
$?$
set 2
set 3

Connected pixels and sets. Set 2 is only connected for 8 -connectivity.

- Relation 'is connected to' is reflexive, symmetric and transitive
\Rightarrow It is a relation of equivalence
\Rightarrow It partitions the image into connected components
- Connected components are the maximal connected sets of pixels

Operations of shrinking and expanding

- Hole in S is a component of \underline{S} surrounded by S.
- Pixel $P \in S$ is called a border pixel if it has a neighbour in \underline{S} in the sense of connectivity used in \underline{S}.
- Otherwise, S is called an interior pixel.

Illustrations to definitions of hole and border.

Image data structures and run-length code

Binary image processing: Processing bilevel images using geometric criteria.
Different image data structures are used for binary image processing. The data structures differ in data compression and in operations they support.

- Original image matrix
- Quadtree (area-based)
- Run-length code (area-based)
- Chain code (contour-based)

Run-length code (RLC):

- A binary image is represented by a set of horizontal runs.
- A run is a maximal continuous sequence of object pixels.

Definitions

- $S^{(-1)}$ denotes shrinking of S : delete border of S.
- $S^{(-k)}$ is k-step shrinking of S : repeat shrinking k times.
- $S^{(1)}$ denotes expanding of S : interchange the connectivities of S and \underline{S}, then shrink \underline{S}.
- $S^{(k)}$ is k-step expanding of S : repeat expanding k times.

Examples of shrinking and expanding. For 4-connected $S, S^{(-1)}$ is empty: shrinking does not preserve connectivity and may remove objects.

Each run R is coded by

- row r and column c of the starting pixel
- length S : number of pixels in the run
- label L : identifies the connected component to which the run belongs

run R : $\{$ row r, column c, length S, label L \}
Run-length coding. L_{1} and L_{2} are labels.

RLC-based connected component analysis

Connected component analysis: Finding connected components of a binary image.
Different algorithms for connected component analysis exist, based on different data structures. In particular:

- The simplest algorithm is recursive: Find next unlabelled pixel in image matrix, spread recursively to neighbours, mark visited pixels by current label.
- Short: a few lines of code
- Inefficient, or even dangerous, when components are large and recursion is deep
- Chain coding by contour tracing: Described later in this course.
- RLC-based connected component analysis: Obtain unlabelled RLC first, then assign a label to each run.

Algorithm 1: Connected component labelling of RLC

1. Select connectivity (8 or 4). Allocate and initialise equivalency table (matrix) $E_{i j}=0$ if $i \neq j, E_{i i}=1$. Set label counter $N_{L}=0$.
2. Scan RLC and find the next unlabelled run $R(r, c, S)$. Search the previous row $r^{\prime}=r-1$ and find runs $R_{k}^{\prime}, k=1,2, \ldots, N_{c}$, which are connected to R. $\left(R_{k}^{\prime}\right.$ are already labelled.)

- If $N_{c}=0$ (no connected runs), open a new label by assigning label N_{L} to run R, then increment N_{L}.
- If $N_{c}=1$ and there is single connected run R_{1}^{\prime} with label L_{1}^{\prime}, then propagate label by assigning label L_{1}^{\prime} to run R.
- If $N_{c}>1$, select the smallest of the connected run labels $L_{k}^{\prime}, L_{s}^{\prime}$, then merge labels by assigning label L_{s}^{\prime} to run R and setting $E_{k s}=1$ for all k.

Repeat until the end of RLC is reached.
3. Use the final equivalency table $E_{i j}$ to re-label the runs and obtain the true number of connected components.

A typical RLC-based connected component algorithm allocates a label equivalency table, inputs unlabelled RLC, and operates in two passes.

- The first pass includes three basic procedures:
- opening a new label
- propagating an existing label
- merging the equivalent labels and updating the equivalency table
- The second pass recomputes the labels based on the equivalency table.

RLC-based connected component analysis.

Skeletal representation

Definition: An interior point of a shape belongs to the medial axis (MA) of the shape if this point lies at the same distance from two or more nearest contour points.

- Medial axis is the locus of such points.
- Operation that finds the medial axis of a shape is called medial axis transform (MAT).

Examples of medial axes of simple shapes. MA of a disc is its centre. Note that bisector of each angle is a branch of MA.

- In continuous case, MA is always a connected set of points.
- MA is a compact and efficient representation of shapes consisting of elongated parts, for instance, letters, chromosomes.
- Medial axis is a regenerative description if the distance is assigned to each point of MA
- Then the shape can be restored from its MA as the locus of inscribed circles

Medial axes as the locus of centres of inscribed circles.

Distance transform and MAT

The simple algorithm given below

- inputs a binary image $u(r, c)$;
- computes its distance transform $u_{D T}(r, c)$ and its medial axis $u_{M A}(r, c)$.

Comments:

- $u_{D T}(r, c)$ is a greyscale image coding the distance from object pixel (r, c) to the nearest background point
- $u_{M A}(r, c)$ is a binary image.
- We approximate the Euclidean distance is by the city-block distance
- In practice, finer approximations are used, but principle of operation is the same.
- MA is very sensitive to small (e.g., noisy) variations of shape.
- Medial axis of shape can be obtained using distance transform (DT) of shape.
- DT assigns to each point the distance from that point to contour of shape.
- In discrete case, distance to the closest background pixels is used. Different discrete approximationsto DT exist.
- MA of discrete shape may be disconnected

Sensitivity of medial axis to small shape variations.

Algorithm 2: Simple discrete DT and MAT

1. Select 4-connectivity for object pixels. Denote by $\Delta(r, c ; i, j)$ the distance between (r, c) and (i, j). Initalise $u_{0}(r, c)=u(r, c)$.
2. Compute DT recursively for $k=1,2, \ldots$ as

$$
\begin{equation*}
\left.u_{k}(r, c)=u_{0}(r, c)+\min _{i, j}\left\{u_{k-1}(i, j) ;(i, j): \Delta(r, c ; i, j) \leq 1\right)\right\} \tag{1}
\end{equation*}
$$

Iterate (1). Stop when no more changes occur: $u_{k}(r, c)=u_{k-1}(r, c)$ for all r, c. Set $u_{D T}(r, c)=u_{k}(r, c)$.
3. Compute MAT $u_{M A}(r, c)$ as the set of points

$$
\left\{(r, c): u_{D T}(r, c) \geq u_{D T}(i, j) ; \Delta(r, c ; i, j) \leq 1\right\}
$$

- The MAT procedure can be reversed to restore the object from its skeleton if the distance information is preserved.

Example of computing DT and MAT:

$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$		$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$		$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$		1222221		1222221
1111111	\rightarrow	1222221	\rightarrow	1233321
1111111		1222221		1222221
$\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ & u_{0}(r, c) \end{array}$		$\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ & u_{1}(r, c) \end{array}$		$\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ & \\ & u_{2}(r, c) \end{array}$
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$		$1 \quad 1$		\bullet
1222221		$2 \quad 2$		\bullet
1233321	\rightarrow	333	\rightarrow	- - -
1222221		22		-
1111111		11		- •
$u_{D T}=u_{3}=u_{2}$		maxima of $u_{D T}$		medial axis $u_{M A}$

Thinning and skeleton

Thinning is a special kind of iterative shrinking that preserves topology. The result of thinning is the skeleton of the object.

Definition: S is thinned down to a skeleton by successively deleting its border pixels, provided that:

1. no such deletion disconnects S;
2. the endpoints are not deleted.

image

skeleton

An example of thinning

image

distorted image

DT

In DT images, dark points are large distances from background.

A thinning algorithm for 8-connected skeleton

Consider a point P_{1} and its 3×3 neighbourhood.

P_{3}	P_{2}	P_{9}
P_{4}	P_{1}	P_{8}
P_{5}	P_{6}	P_{7}

Labelling point P_{1} and its neighbours.
Introduce

- $Z 0\left(P_{1}\right)$: the number of zero to nonzero transitions in the sequence $\left\{P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}, P_{9}, P_{2}\right\}$
- $Z 0\left(P_{1}\right)$ is calculated by going around the pixel P_{1}.
- This counting operation is also often used to analyse thinned images, for example, to find line endpoints.
- $N Z\left(P_{1}\right)$: the number of nonzero neighbours of P_{1}

Algorithm 3: Thinning

1. Allocate two images, $u_{1}(r, c)$ and $u_{2}(r, c)$, of the same size as the input binary image $u_{0}(r, c)$. Initialise $u_{2}=u_{1}=u_{0}$.
2. Scan u_{1}, delete points in u_{2}.
3. In each current point P_{1} compute $Z 0\left(P_{1}\right), N Z\left(P_{1}\right), Z 0\left(P_{2}\right)$ and $Z 0\left(P_{4}\right)$.
4. Delete P_{1} if the following conditions are simultaneously satisfied:

$$
\left\{\begin{array}{c}
2 \leq N Z\left(P_{1}\right) \leq 6 \\
Z 0\left(P_{1}\right)=1 \\
P_{2} \cdot P_{4} \cdot P_{8}=0 \quad \text { OR } \quad Z 0\left(P_{2}\right) \neq 1 \\
P_{2} \cdot P_{4} \cdot P_{6}=0 \quad \text { OR } \quad Z 0\left(P_{4}\right) \neq 1
\end{array}\right.
$$

5. When scanning of u_{1} is finished, stop if no points were deleted. Otherwise, copy u_{2} onto u_{1} and go to step 2 .

1	1	0				
1	P_{1}	1				
0	0	0	\quad	0	0	0
:---:	:---:	:---:				
1	P_{1}	0				
0	0	0	\quad	1	0	1
:---:	:---:	:---:				
0	P_{1}	0				
1	1	1				

(a)
(c)

Examples where $P_{1}=1$ is not deletable: (a) deleting P_{1} splits region; (b) deleting P_{1} shortens line ends; (c) $2 \leq N Z\left(P_{1}\right) \leq 6$, but P_{1} is not deletable.

Comments to the thinning algorithm:

- To compute $Z 0\left(P_{2}\right)$ and $Z 0\left(P_{4}\right)$, at each point we examine pixels from a 4×4 neighbourhood.
- The neighbourhood is formed and used in an asymmetric way: for example, $Z 0\left(P_{2}\right)$ and $Z 0\left(P_{4}\right)$ are computed, while $Z 0\left(P_{6}\right)$ and $Z 0\left(P_{8}\right)$ are not.
- This asymmetry allows the algorithm to obtain 1-pixel wide skeletons for lines of even width.
\Rightarrow The result may be slightly (0.5 pixel) shifted wrt the 'true' skeleton.

Properties of skeleton

- Skeleton is, by definition, a connected set
- Like medial axis, skeleton is the sum of branches
- Skeleton follows shape of object comprised of elongated parts
- In other cases, relation between object and skeleton may not be that obvious.
- Skeleton is usually similar to medial axis.
\Rightarrow Often, no distinction between skeleton and MA is made. Thinning and MAT are viewed as alternative ways of obtaining a skeletal representation of an object. Then the medial axis is also called 'skeleton'.
- Skeleton may significantly differ from MA. (Compare the skeleton and the medial axis of a rectangle.)

image

MAT

Summary of skeletal representation

Advantages of skeletal representation of shape:

- Compresses data.
- Reflects structure of shape.
- Rotation-invariant. (In discrete case, only approximately.)
- Regenerative: Original shape can be restored from skeleton and distance data.

Drawbacks:

- Mainly useful for shapes comprised of elongated parts.
- MAT is sensitive to noise and distortions

