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Lecture 11: Binary image processing I

• Basic notions of digital geometry

◦ 4-connectivity and 8-connectivity
◦ Connected components
◦ Holes and borders
◦ Shrinking and expanding

• Image data structures and run-length code (RLC)

• RLC-based connected component analysis

• Skeletal representation

◦ Medial axis
◦ Distance transform and medial axis
◦ Thinning and skeleton
◦ Summary of skeletal representation
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Basic notions of digital geometry

Connectivity in digital images:

• 8 neighbours or 4 neighbours: 8-connectivity, 4-connectivity

• Contradiction arises if same type of connectivity is used for object (S) and
background (S): pairs of pixels from the two sets may be connected ‘across
each other’.

• Solution: Use different types of connectivity for S and S

◦ 8-connectivity in S ⇒ 4-connectivity in S

◦ 4-connectivity in S ⇒ 8-connectivity in S

S

S

8-connectivity 4-connected setcontradiction 8-connected set4-connectivity

?
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Definition: Let S be a set of pixels and pixels P, Q ∈ S. P is connected to Q if
there exists a sequence of pixels P = P0, P1, . . . , Pn = Q , Pi ∈ S, such that Pi is
a neighbour of Pi−1, i ∈ [1, n].

set 2

Q

set 3
P

set 1

?

Connected pixels and sets. Set 2 is only connected for 8-connectivity.

• Relation ‘is connected to’ is reflexive, symmetric and transitive

⇒ It is a relation of equivalence
⇒ It partitions the image into connected components

• Connected components are the maximal connected sets of pixels
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Definitions:

• Hole in S is a component of S surrounded by S.

• Pixel P ∈ S is called a border pixel if it has a neighbour in S in the sense of
connectivity used in S.

◦ Otherwise, S is called an interior pixel.

hole

S

S

4-border

pixel

8-borderset

interior

Illustrations to definitions of hole and border.
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Operations of shrinking and expanding

Definitions

• S(−1) denotes shrinking of S: delete border of S.

◦ S(−k) is k-step shrinking of S: repeat shrinking k times.

• S(1) denotes expanding of S: interchange the connectivities of S and S, then
shrink S.

◦ S(k) is k-step expanding of S: repeat expanding k times.

shrink expand

4-connected set8-connected set

expand

8-connected set

Examples of shrinking and expanding. For 4-connected S, S(−1) is empty:
shrinking does not preserve connectivity and may remove objects.
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Image data structures and run-length code

Binary image processing: Processing bilevel images using geometric criteria.

Different image data structures are used for binary image processing. The data
structures differ in data compression and in operations they support.

• Original image matrix

• Quadtree (area-based)

• Run-length code (area-based)

• Chain code (contour-based)

Run-length code (RLC):

• A binary image is represented by a set of horizontal runs.

• A run is a maximal continuous sequence of object pixels.
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Each run R is coded by

• row r and column c of the starting pixel

• length S: number of pixels in the run

• label L: identifies the connected component to which the run belongs

r: {row R , column run

L

c

r 2

c

L

S

, label L

1

, length S }

Run-length coding. L1 and L2 are labels.

An image can be restored from its RLC, labelled or unlabelled.
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RLC-based connected component analysis

Connected component analysis: Finding connected components of a binary image.

Different algorithms for connected component analysis exist, based on different
data structures. In particular:

• The simplest algorithm is recursive: Find next unlabelled pixel in image matrix,
spread recursively to neighbours, mark visited pixels by current label.

◦ Short: a few lines of code
◦ Inefficient, or even dangerous, when components are large and recursion is

deep

• Chain coding by contour tracing: Described later in this course.

• RLC-based connected component analysis: Obtain unlabelled RLC first, then
assign a label to each run.
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A typical RLC-based connected component algorithm allocates a label
equivalency table, inputs unlabelled RLC, and operates in two passes.

• The first pass includes three basic procedures:

◦ opening a new label
◦ propagating an existing label
◦ merging the equivalent labels and updating the equivalency table

• The second pass recomputes the labels based on the equivalency table.

m : merge
pp

m

2

1

L
p : propagate

: open label

p

L3
8-connected runs

L

4-connected runs

L

RLC-based connected component analysis.
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Algorithm 1: Connected component labelling of RLC

1. Select connectivity (8 or 4). Allocate and initialise equivalency table (matrix)
Eij = 0 if i 6= j, Eii = 1. Set label counter NL = 0.

2. Scan RLC and find the next unlabelled run R(r, c, S). Search the previous row
r′ = r − 1 and find runs R′

k, k = 1, 2, . . . , Nc, which are connected to R. (R′

k

are already labelled.)

• If Nc = 0 (no connected runs), open a new label by assigning label NL to
run R, then increment NL.

• If Nc = 1 and there is single connected run R′

1 with label L′

1, then propagate
label by assigning label L′

1 to run R.
• If Nc > 1, select the smallest of the connected run labels L′

k, L′

s, then merge
labels by assigning label L′

s to run R and setting Eks = 1 for all k.

Repeat until the end of RLC is reached.

3. Use the final equivalency table Eij to re-label the runs and obtain the true
number of connected components.
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Skeletal representation

Definition: An interior point of a shape belongs to the medial axis (MA) of the
shape if this point lies at the same distance from two or more nearest contour
points.

• Medial axis is the locus of such points.

• Operation that finds the medial axis of a shape is called medial axis transform
(MAT).

Examples of medial axes of simple shapes. MA of a disc is its centre.
Note that bisector of each angle is a branch of MA.
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Properties of medial axis

• In continuous case, MA is always a connected set of points.

• MA is a compact and efficient representation of shapes consisting of elongated
parts, for instance, letters, chromosomes.

• Medial axis is a regenerative description if the distance is assigned to each
point of MA.

◦ Then the shape can be restored from its MA as the locus of inscribed circles

Medial axes as the locus of centres of inscribed circles.
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Properties of medial axis (continued)

• MA is very sensitive to small (e.g., noisy) variations of shape.

• Medial axis of shape can be obtained using distance transform (DT) of shape.

◦ DT assigns to each point the distance from that point to contour of shape.
◦ In discrete case, distance to the closest background pixels is used. Different

discrete approximationsto DT exist.

• MA of discrete shape may be disconnected.

Sensitivity of medial axis to small shape variations.
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Distance transform and MAT

The simple algorithm given below

• inputs a binary image u(r, c);

• computes its distance transform uDT (r, c) and its medial axis uMA(r, c).

Comments:

• uDT (r, c) is a greyscale image coding the distance from object pixel (r, c) to
the nearest background point.

• uMA(r, c) is a binary image.

• We approximate the Euclidean distance is by the city-block distance.

• In practice, finer approximations are used, but principle of operation is the same.
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Algorithm 2: Simple discrete DT and MAT

1. Select 4-connectivity for object pixels. Denote by ∆(r, c; i, j) the distance
between (r, c) and (i, j). Initalise u0(r, c) = u(r, c).

2. Compute DT recursively for k = 1, 2, . . . as

uk(r, c) = u0(r, c) + min
i,j

{uk−1(i, j); (i, j) : ∆(r, c; i, j) ≤ 1)} (1)

Iterate (1). Stop when no more changes occur: uk(r, c) = uk−1(r, c) for all r, c.
Set uDT (r, c) = uk(r, c).

3. Compute MAT uMA(r, c) as the set of points

{(r, c) : uDT (r, c) ≥ uDT (i, j); ∆(r, c; i, j) ≤ 1}
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• DT is finished when k equals half the maximum thickness of the object.

• The MAT procedure can be reversed to restore the object from its skeleton if
the distance information is preserved.

Example of computing DT and MAT:

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

→

1 1 1 1 1 1 1
1 2 2 2 2 2 1
1 2 2 2 2 2 1
1 2 2 2 2 2 1
1 1 1 1 1 1 1

→

1 1 1 1 1 1 1
1 2 2 2 2 2 1
1 2 3 3 3 2 1
1 2 2 2 2 2 1
1 1 1 1 1 1 1

u0(r, c) u1(r, c) u2(r, c)

1 1 1 1 1 1 1
1 2 2 2 2 2 1
1 2 3 3 3 2 1
1 2 2 2 2 2 1
1 1 1 1 1 1 1

→

1 1
2 2

3 3 3
2 2

1 1

→

• •
• •
• • •

• •
• •

uDT = u3 = u2 maxima of uDT medial axis uMA
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Examples of distance transform

image DT distorted image DT

image DT

In DT images, dark points are large distances from background.
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Thinning and skeleton

Thinning is a special kind of iterative shrinking that preserves topology. The
result of thinning is the skeleton of the object.

Definition: S is thinned down to a skeleton by successively deleting its border
pixels, provided that:

1. no such deletion disconnects S;

2. the endpoints are not deleted.

image skeleton

An example of thinning.
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A thinning algorithm for 8-connected skeleton

Consider a point P1 and its 3 × 3 neighbourhood.

P3 P2 P9

P4 P1 P8

P5 P6 P7

Labelling point P1 and its neighbours.

Introduce

• Z0(P1): the number of zero to nonzero transitions in the sequence
{P2, P3,P4, P5, P6, P7, P8, P9, P2}

◦ Z0(P1) is calculated by going around the pixel P1.
◦ This counting operation is also often used to analyse thinned images, for

example, to find line endpoints.

• NZ(P1): the number of nonzero neighbours of P1
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Algorithm 3: Thinning

1. Allocate two images, u1(r, c) and u2(r, c), of the same size as the input binary
image u0(r, c). Initialise u2 = u1 = u0.

2. Scan u1, delete points in u2.

3. In each current point P1 compute Z0(P1), NZ(P1), Z0(P2) and Z0(P4).

4. Delete P1 if the following conditions are simultaneously satisfied:















2 ≤ NZ (P1) ≤ 6
Z0 (P1) = 1

P2 · P4 · P8 = 0 OR Z0 (P2) 6= 1
P2 · P4 · P6 = 0 OR Z0 (P4) 6= 1

5. When scanning of u1 is finished, stop if no points were deleted. Otherwise, copy
u2 onto u1 and go to step 2.
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1 1 0
1 P1 1
0 0 0

0 0 0
1 P1 0
0 0 0

1 0 1
0 P1 0
1 1 1

(a) (b) (c)

Examples where P1 = 1 is not deletable: (a) deleting P1 splits region; (b) deleting
P1 shortens line ends; (c) 2 ≤ NZ(P1) ≤ 6, but P1 is not deletable.

Comments to the thinning algorithm:

• To compute Z0(P2) and Z0(P4), at each point we examine pixels from a 4 × 4
neighbourhood.

• The neighbourhood is formed and used in an asymmetric way: for example,
Z0(P2) and Z0(P4) are computed, while Z0(P6) and Z0(P8) are not.

• This asymmetry allows the algorithm to obtain 1-pixel wide skeletons for lines
of even width.

⇒ The result may be slightly (0.5 pixel) shifted wrt the ‘true’ skeleton.
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Properties of skeleton

• Skeleton is, by definition, a connected set.

• Like medial axis, skeleton is the sum of branches.

◦ Skeleton follows shape of object comprised of elongated parts.
◦ In other cases, relation between object and skeleton may not be that obvious.

• Skeleton is usually similar to medial axis.

⇒ Often, no distinction between skeleton and MA is made. Thinning and MAT
are viewed as alternative ways of obtaining a skeletal representation of an
object. Then the medial axis is also called ‘skeleton’.

• Skeleton may significantly differ from MA. (Compare the skeleton and the
medial axis of a rectangle.)
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image thinning MAT

Comparison of thinning and MAT.
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Summary of skeletal representation

Advantages of skeletal representation of shape:

• Compresses data.

• Reflects structure of shape.

• Rotation-invariant. (In discrete case, only approximately.)

• Regenerative: Original shape can be restored from skeleton and distance data.

Drawbacks:

• Mainly useful for shapes comprised of elongated parts.

• MAT is sensitive to noise and distortions.
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