Institute of Informatics Eötvös Loránd University Budapest, Hungary

Basic Algorithms for Digital Image Analysis:

a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó and Levente Hajder

http://visual.ipan.sztaki.hu

Lecture 10: Image segmentation

• Region-oriented segmentation

- \circ Definition
- \circ Region growing
- $\circ\,$ Region merging
- $\circ~\mbox{Region}$ growing by merging
- Quadtrees
- $\circ~$ Split-and-merge algorithms
- $\circ~$ Comparison of growing, merging and split-and-merge
- Other segmentation methods

2

Region-oriented segmentation

Goal: Obtain homogeneous connected regions.

Basic formulation of segmentation: Partition the image R into n subregions R_1,R_2,\ldots,R_n so that

- 1. $\bigcup_{i=1}^{n} R_i = R$
- 2. R_i is a connected region, $i = 1, 2, \ldots, n$
- 3. $R_i \cap R_j = \emptyset$ for all i and $j, i \neq j$
- 4. $P(R_i) = TRUE$ for i = 1, 2, ..., n
- 5. $P(R_i \cup R_j) = FALSE$ for all adjacent $i, j \ (i \neq j)$

where $P(R_i)$ is a logical **homogeneity predicate** over the points in region R_i : $P(R_i) = TRUE$ means that all pixels in R_i have similar properties, that is, R_i is homogeneous. Examples of homogeneity predicates for a region:

- Difference between max and min greyvalues is small.
- Difference between any pixel and mean greyvalue is small.

Meaning of conditions (1–5):

- 1. Completeness: Each pixel is assigned to a region.
- 2. Connectedness: Points in each region are connected.
- 3. Regions are disjoint.
- 4. Each region is homogeneous.
- 5. Any union of adjacent regions is inhomogeneous: Minimise number of regions.

Region growing and region merging

Region growing: Group pixels or subregions into larger regions while the homogeneity criterion is satisfied.

A simple form of region growing is **pixel aggregation**:

- Select seed points and a homogeneity criterion.
- Grow regions around each seed point by appending those neighboring pixels that have similar properties.

Pixel aggregation is usually followed by region merging.

- Region merging is a form of region growing.
- It can be applied as a separate operation, or be incorporated into an iterative segmentation algorithm.

5

Different homogeneity criteria can be used. In the example below:

- the criterion is the maximum allowed absolute difference ${\cal T}$ within region;
- region merging is applied after growing.

0	0	5	6	7		а	а	b	b	b	а	а	а	а	а	
1	1	5	8	7		а	а	b	b	b	а	а	а	а	а	
0	1	6	7	7		а	а	b	b	b	а	а	а	а	а	
2	0	7	6	6		а	а	b	b	b	а	а	а	а	а	
0	1	5	6	5		а	а	b	b	b	а	а	а	а	а	
(a)						(b)					(c)					

Example of pixel aggregation followed by region merging: (a) Original image matrix with two seeds indicated. (b) Result for T = 4. (c) Result for T = 8.

Major problem with pixel aggregation: How to select seeds?

• Result depends heavily on choice and order of seeds.

Algorithm 1: Region growing by pixel aggregation

- 1. Initialisation: Select N seed pixels S_i , i = 1, 2, ..., N, and a threshold T. Initialise N regions $R_i^{(0)}$ as the seed pixels S_i . Initialise N region mean values $M_i^{(0)}$ as the greyvalues of S_i .
- 2. At each iteration k, find **border pixels** of each region $R_i^{(k)}$.
- 3. Search the 8-neighbourhood of each border pixel of each region. Assign a pixel p=f(x,y) to $R_i^{(k)}$ if
 - p is a 8-neighbour of a border pixel of $R_i^{(k)}$ and
 - p has not been assigned yet and
 - greyvalue of p is sufficiently close to region mean: $|f(x,y)-M_i^{(k)}| \leq T$
- 4. Stop if no region growing was possible. Otherwise, update $M_i^{(k)}$ and iterate by going to step 2.

6

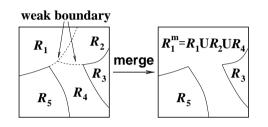
Region merging

Region merging is a form of region growing. This operation is applied when adjacent regions have similar properties.

• For example, this happens in pixel aggregation when **several seeds** are given for one region.

Different merging criteria: Merge two adjacent regions R_i and R_j if

- $P_{agg}(R_i \cup R_j) = TRUE$, where P_{agg} is the criterion used for aggregation, or
- $P(R_i \cup R_j) = TRUE$, where P is another homogeneity predicate, or
- border between R_i and R_j has no strong edges (gradient > T_{high}), or
- border between R_i and R_j has many weak locations (gradient $< T_{low}$),


7

Region growing by merging

Merging and growing can be combined with **image division** (splitting). This can be done in different ways. The goal is to avoid interactive **specification of seeds**.

Basic idea of region growing by merging:

- Divide image into atomic regions of constant greylevel, or other local property.
- Merge similar adjacent regions sequentially until the adjacent regions become sufficiently different.

Region growing by merging.

9

Split-and-merge method and quadtrees

The $\ensuremath{\textbf{split}}\xspace$ algorithm uses a homogeneity predicate P and has two stages:

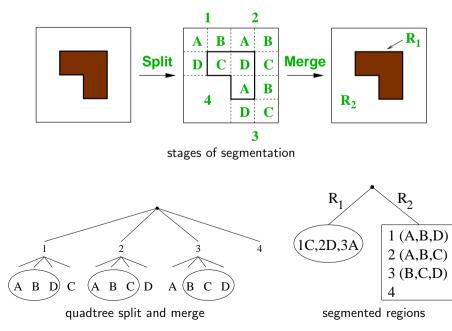
- Top-down: Split image into homogeneous quadrant regions
- Bottom-up: Merge similar adjacent regions

Algorithm 2: Split-and-merge algorithm

- 1. Top-down: Successively subdivide image and regions into smaller quadrant regions until $P(R_i) = TRUE$ for each R_i . Obtain a **quadtree** structure.
- 2. Bottom-up: At each level, merge any adjacent regions R_i and R_j for which $P(R_i \cup R_j) = TRUE$.
- 3. Repeat steps 1 and 2 until no further splitting/merging is possible.

Summary of region growing

Advantages of region growing:


- Connected regions guaranteed.
- Possibility to incorporate *prior knowledge* about regions: shape, size, texture, spatial relations, etc.
- \Rightarrow Regions obtained have desired properties.

Drawbacks:

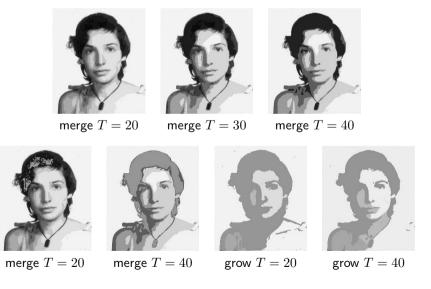
- Prior information may be needed: seeds, starting points.
- Heuristics needed: for example, merging rules ('weak borders', etc.)
- Intrinsically **sequential**: no parallel implementation possible.
- Order-dependence: Result depends on the order in which pixels are examined.

Possible solutions: Look-ahead, back-tracking.

10

Segmentation by split-and-merge approach.

Summary of split-and-merge


Advantages of split-and-merge:

- Connected regions guaranteed
- Some (limited) possibility to incorporate geometric knowledge

Drawbacks:

- Result may depend on position and orientation of image with respect to raster
- Imposes rectangular structure on segmented image
- Relatively large computational load and storage requirements
- Simple quadtree only supports vertical dataflow
 - Adjacent regions to be merged can be 'far away' in quadtree

Quadtrees are widely used in GIS (Geographic Information Systems).

- As T increases, number of regions decreases, merging segmentation becomes coarser. Dark hair region extends.
 - In region growing, the effect is just the opposite: dark region shrinks.

Comparison of a growing and a merging algorithm

image with seeds

grow T = 30

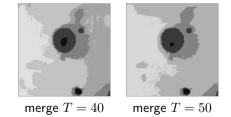

grow T = 40

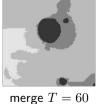
• When T = 20, face regions with large variation cannot grow.

grow T = 20

- \Rightarrow Dark hair region with small variation spreads and occupies large area
- When T = 30, face regions can grow and occupy larger areas.
- \Rightarrow Dark hair region shrinks
- Result depends on order and positions of seeds.

Comparison of split-and-merge and region merging




cell image

SaM T = 40

SaM T = 50SaM T = 60

- Rectangular structure of splitting is visible in split-and-merge images.
- Merging segmentation looks finer.

Other segmentation methods

- **Model-based** segmentation: Partition image into segments of known shape and other properties.
- Edge-based segmentation: Find object contours by edge tracing.
- **Texture-based** segmentation: Apply region-based techniques to textural properties of regions.
- Motion-based segmentation: In an image sequence, locate objects based on their motion.
- **Rule-based** segmentation: Expert system with general-purpose knowledge about images and grouping criteria.

