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Eötvös Loránd University

Budapest, Hungary

Basic Algorithms for Digital Image Analysis:

a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó
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Lecture 9: Grey-level thresholding

• Principles of grey-level thresholding

• Histogram-based thresholding

• Methods for histogram-based threshold selection

◦ Histogram modality analysis
◦ Best separation of classes (Otsu)
◦ Histogram modelling by Gaussian distributions

• Discussion of grey-level thresholding

◦ Examples of thresholding
◦ Imroving the histogram for better peak separation
◦ Thresholding versus edge detection
◦ Limits of thresholding
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Principles of grey-level thresholding

Grey-level thresholding is a simple image segmentation technique that assumes
the following conditions:

• Scene model: Scene contains uniformly illuminated, flat surfaces.

• Image model: Image is a set of approximately uniform regions.

Goals of thresholding: Set one or more thresholds which split the intensity range
into intervals defining intensity classes

• Separate objects from background.

• Label objects by classifying pixel intensities into two or more classes.
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Definition of N-level thresholding

Set N − 1 thresholds Tk, k = 1, . . . , N − 1, N ≥ 2, so that a pixel f(x, y) is
classified into class n if

Tn−1 ≤ f(x, y) < Tn, n = 1, . . . , N,

where by definition T0

.
= Gmin and TN

.
= Gmax + 1 are the limits of the intensity

range (0 and 256).

T
2T
3T

background
1

Illustration of 4-level thresholding. By definition, T0 = 0 and T4 = 256.
The first level is the background.
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original image 2-level thresholding 3-level thresholding

Examples of automatic thresholding into 2 and 3 levels.

• The case of a single threshold (N = 2) is called bilevel (binary) thresholding,
or binarisation.

=⇒ The case considered in this course.

• If N > 2, thresholding is called multilevel.

◦ Sometimes, the case N = 3 is called trilevel thresholding.
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Histogram-based thresholding

• Bimodal histogram with distinct modes and valley between modes is most
suitable for threshold selection. Minimum of valley separates the 2 classes.

• If a mode lies at limit of intensity range, modelling the histogram is difficult.

• If modes are not distinct, setting a good threshold is not easy.

• Thresholding a unimodal histogram is difficult but still possible.

bimodal too small, too close unimodal

Typical histogram shapes for threshold selection. From left to right: bimodal
histogram; mode is too small, peak is too close to limit; unimodal histogram.
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Examples of good and bad threshold selections for a fingerprint image:

• Different thresholds are acceptable.

• A too low threshold tends to split the lines.

• A too high threshold tends to merge the lines.

Image Good 1 Good 2 Too low Too high Histogram

Thresholding a fingerprint image. In the histogram, positions of good (G), too
low (L) and too high (H) thresholds are shown.
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Histogram modality analysis

Algorithm: Select threshold(s) in valley(s) between peaks.

Parameters:

• Minimum height of peak

• Minimum distance between peaks

T1 T2

Histogram modality analysis: Selecting thresholds in valleys between peaks.

8



Advantages of modality analysis:

• Natural and easy to understand.

• Multilevel thresholding possible.

• Relatively small populations (classes) can be treated, at least in principle.

Drawbacks of modality analysis:

• Subjective: What is a peak? A valley?

• Several parameters should be preset that specify these histogram features.

• Many histograms are not multimodal

◦ Unimodal histograms
◦ Histograms having no clear modes
◦ Possible solution: Modify histogram to obtain distinct modes (discussed

later)
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Maximal separation of classes (N.Otsu, 1978)

Basic idea:

• Consider a candidate threshold t. t defines two classes of grayvalues.

• Find the optimal threshold t = topt as the one that maximises a separation
measure for the two classes.

1C 2

it

P

C

Obtaining the best possible separation of two classes.
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Consider the normalised histogram P (i), i = 0, 1, . . . , M . It has mean µ and
variance σ2:

µ =
M
∑

i=0

i · P (i) σ2 =
M
∑

i=0

(i − µ)2 · P (i) (1)

A candidate threshold t splits the histogram into 2 classes whose means and
variances are

µk(t) =
1

qk(t)

bk
∑

i=ak

i · P (i) σ2

k(t) =
1

qk(t)

bk
∑

i=ak

[i − µk(t)]
2 · P (i)

where k = 1, 2, a1 = 0, b1 = t, a2 = t + 1, b2 = M and

qk(t) =

bk
∑

i=ak

P (i) q1(t) + q2(t) = 1
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Introduce between-class variance σ2

B(t) and within-class variance σ2

W (t):

σ2

B(t) = q1(t) · [1 − q1(t)] · [µ1(t) − µ2(t)]
2 (2)

σ2

W (t) = q1(t) · σ2

1
(t) + q2(t) · σ2

2
(t)

It is easy to show that

µ = q1(t) · µ1(t) + q2(t) · µ2(t) σ2 = σ2

W (t) + σ2

B(t)

Since σ2

W (t) + σ2

B(t) is constant, we have two equivalent options:

• σ2

B(t) is a measure of class separation ⇒ Maximise σ2

B(t)

• σ2

W (t) is a measure of class overlap ⇒ Minimise σ2

W (t)

We use the first option.
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To compute σ2

B(t) for any discrete t > 0, recursive formulae are used:

q1(t + 1) = q1(t) + P (t + 1) with q1(0) = P (1)

µ1(t + 1) =
q1(t) · µ1(t) + (t + 1) · P (t + 1)

q1(t + 1)
with µ1(0) = 0 (3)

µ2(t + 1) =
µ − q1(t + 1) · µ1(t + 1)

1 − q1(t + 1)

Algorithm 1: Otsu threshold selection

1. Compute normalised histogram P (i) of image I(r, c).

2. Starting from t = 0 and using (3) and (1), recursively compute q1(t), µ1(t) and
µ2(t) for each t < Gmax .

3. For each 0 < t < Gmax, calculate σ2

B(t) by (2).

4. Select threshold as topt = arg maxt σ2

B(t).
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Properties of Otsu threshold selection

Advantages:

• General: No specific histogram shape assumed.

• Works well, stable.

• Extension to multilevel thresholding possible.

◦ For N thresholds and M +1 grey levels, optimisation of class separation needs
maximum search in a (M + 1)N array

Drawbacks:

• The method assumes that σ2

B(t) is unimodal. This is not always true.

• When optimisation function is flat, false maxima may occur.

• The method tends to artificially enlarge small classes to obtain ‘better
separation’: small classes may be merged and missed.
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Histogram modelling by Gaussian distributions

Basic idea:

• Assume that the histogram P (i) is a mixture of Gaussian distributions

• Approximate P (i) by this model and estimate the parameters of the model

• Find optimal threshold(s) analytically as valley(s) in the model function

1

f1 f2

f1 f2

µ

+P

2µ i

optt in

Modeling the histogram by a mixture of two Gaussian distributions.
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Theoretically correct estimation is possible in the case of two Gaussian
distributions, that is, for bilevel thresholding.

Approximate the histogram P (i) with the model distribution

f(i;p) = q1 · f1(i;p1) + q2 · f2(i,p2)

=
q1√
2πσ1

exp−
1

2

(

i − µ1

σ1

)2

+
q2√
2πσ2

exp−
1

2

(

i − µ2

σ2

)2

,
(4)

where p = (q1, q2, µ1, µ2, σ1, σ2), p1 = (q1, µ1, σ1), p2 = (q2, µ2, σ2) are the
parameter sets of the functions f , f1 and f2.

q1 and q2 are the weights of the two distributions. Since q1 + q2 = 1, f has five
free parameters. Exclude q2 and denote p′ = (q1, µ1, µ2, σ1, σ2).

Introduce the error function

C(p′) =
∑

i

[f(i;p′) − P (i)]
2

(5)
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To approximate P (i) with f(i;p′) and find the optimal parameters, we need to
minimise C(p′). This means nonlinear minimisation with 5 variables. Any
nonlinear minimisation algorithm can be used, for example:

• Newton’s method

• Marquard-Levenberg algorithm

Assume the optimal model function f(i; p̂) has been obtained and

p̂ = (q̂1, q̂2, µ̂1, µ̂2, σ̂1, σ̂2)

are the optimal parameters.

The optimal threshold can be derived analytically by minimising the probability of
erroneous classification

E(t) = E1(t) + E2(t) =

t
∫

−∞

f2(i)di +

∞
∫

t

f1(i)di
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Meaning of E(t) for a candidate threshold t (see the above drawing):

• E1(t) is the probability that a pixel belonging to class 1 will be classified as
belonging to class 2.

• E2(t) is the probability that a pixel belonging to class 2 will be classified as
belonging to class 1.

Setting the derivative of E(t) to zero and substituting f1 and f2 from (4), we
obtain that the optimal threshold topt is a solution of

A · t2 + B · t + C = 0, (6)

where

A = σ̂2

1
− σ̂2

2

B = 2(µ̂1σ̂
2

2
− µ̂2σ̂

2

1
)

C = σ̂2

1
µ̂2

2
− σ̂2

2
µ̂2

1
+ 2σ̂2

1
σ̂2

2
ln

(

σ̂2q̂1

σ̂1q̂2

)
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• Two solutions for topt are possible that minimise classification error.

• If the variances are equal, σ2

1
= σ2

2
= σ2, a single optimal threshold exists:

topt =
µ̂1 + µ̂2

2
+

σ̂2

µ̂1 − µ̂2

ln

(

q̂1

q̂2

)

Algorithm 2: Gaussian threshold selection

1. Compute normalised histogram P (i) of image I(r, c).

2. Using a minimisation algorithm, minimise the error function C(p′) defined by
(5) and (4) and estimate the optimal parameters q̂1, q̂2, µ̂1, µ̂2, σ̂1, σ̂2.

3. Solve equation (6) for t and obtain the optimal threshold topt.
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Properties of the Gaussian mixture approach

Advantages:

• Relatively general histogram model.

• When the model is valid, minimises classification error probability.

• Can be applicable small-size classes.

Drawbacks:

• Many histograms are not Gaussian. In particular, intensities are finite and
non-negative.

◦ A peak that is close to an intenisity limit cannot be approximated by Gaussian.

• Extension to multithresholding requires significant simplification of the model.

• It is difficult to detect close and flat modes.
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Examples of thresholding

images Otsu results Gaussian results

• Here, both methods give acceptable results.

• The Gaussian algorithm sets lower thresholds in both cases.

⇒ Fits object contours better than Otsu.
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fingerprint image image histogram Otsu T = 158 Gauss T = 199

• Here, both methods still give satisfactory results.

• The Otsu algorithm sets threshold in valley of histogram.

⇒ Fingerprint lines are well-separated.

• The Gaussian algorithm sets slightly high threshold.

⇒ Some fingerprint lines touch.
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low-quality image image histogram Otsu T = 159 Gauss T = 201

• Here, only Otsu gives a satisfactory result.

• The Otsu algorithm finds the small class of pixels (dark discs).

• The Gaussian algorithm tries to separate two high peaks formed by the
background. Noisy valley is selected because the true class is

◦ too small
◦ too far
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image histogram Otsu result

• Here, only Otsu algorithm produces results.

• Gaussian algorithm gives no results at all.

◦ Upper row: unimodal histogram, no approximation obtained
◦ Lower row: an approximation obtained, but the threshold equation has no

real root.
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Imroving the histogram for better peak separation

Use of gradient to improve histogram: Combine intensity and gradient
information for better separation of objects and background.

• Pixels close to edges have high gradients and medium intensities.

• Pixels of object and background have low gradient and low or high intensities.

• To better separate objects from background, discard high gradient pixels when
computing the histogram.

P(i)

i
background

object original

improved

T

T

edge

Principle of histogram peak separation.
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Thresholding versus edge detection

• Thresholding with a constant threshold is a global operation.

◦ Advantage: Closed contours guaranteed
◦ Drawback: Not applicable to images with uneven illumination

• Edge detection is a local operation

◦ Advantage: Applicable to images with uneven illumination
◦ Drawback: Closed contours not guaranteed

f (x)
x

f(x)thresholds

Signal with varying level that cannot be thresholded. Edges can be detected.
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Limits of thresholding

stone crack Otsu method Another method

Merit (quality) of thresholding is task-dependent.

• The merit may include geometric properties.

• Image histogram does not account for geometry.

◦ The crack is detected as set of bright pixels independently of the crack
shape.
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stone Otsu method Another method

In this example, the merit of thresholding is uncertain.

Limits of thresholding:

• No geometric informaton is taken into account.

⇒ Compact and connected regions are not guaranteed.

◦ Select threshold, then arbitrarily interchange pixels in image, select again ⇒
same threshold

• Solution: Combine intensity and geometry using region-oriented methods.
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