Faculty of Informatics
Eötvös Loránd University
Budapest, Hungary

Basic Algorithms for Digital Image Analysis: a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó and Levente Hajder
http://visual.ipan.sztaki.hu

Corners in curves and images

A corner is a sharp turn of a contour.

- Corners are used in shape analysis and motion analysis
- Corners and other points of high curvature are dominant in human perception of 2D shapes
- Shapes can be approximately reconstructed from their dominant points
- Two different operations but related operations are called corner detection:
- Detection of corners in digital curves
\Rightarrow This assumes extracted contours
- Detection of corners in greyscale images
\Rightarrow This does not assume extracted contours

This lecture deals with corner detection in greyscale images.

Lecture 7: Corner detection in greyscale images

- Corners in curves and images
- Importance of corners
- in motion analysis
- in shape perception and analysis
- Corner detection in greyscale images
- Local structure matrix
- KLT corner detector
- Harris corner detector
- Comparison of the two corner detectors

Importance of corners in motion analysis

The aperture problem and the use of corners in motion analysis.

- The displacement vectors are ambiguous at an edge.
- They are unambiguous at a corner.

Importance of corners in shape perception and analysis

The Attneave's Cat. (Attneave, 1955)

- The original smooth shape has been restored based on a small number of high curvature points.
- The cat is easy to recognise.

Two selected corner detectors

Different corner detectors exist, but we will only consider two of them:

- The Kanade-Lucas-Tomasi (KLT) operator
- The Harris operator

Reasons:

- Most frequently used: Harris in Europe, KLT in US.
- Can select corners and other interest points.
- Have many application areas, for example:
- motion tracking, stereo matching, image database retrieval
- Are relatively simple but still efficient and reliable.

The two operators are closely related and based on the local structure matrix.

Corners, edges, and derivatives of intensity function

Diference between greyscale corners and edges:

- Corners are local image features characterised by locations where variations of intensity function $f(x, y)$ in both X and Y directions are high.
\Rightarrow Both partial derivatives f_{x} and f_{y} are large
- Edges are locations where the variation of $f(x, y)$ in a certain direction is high, while the variation in the orthogonal direction is low.
\Rightarrow In an edge oriented along the Y axis, f_{x} is large, while is f_{y} small

Corner

A corner and an edge.

The local structure matrix $C_{s t r}$

Definition of the local structure matrix (tensor):

$$
C_{s t r}=w_{G}(r ; \sigma) *\left[\begin{array}{cc}
f_{x}^{2} & f_{x} f_{y} \tag{1}\\
f_{x} f_{y} & f_{y}^{2}
\end{array}\right]
$$

Explanation of the definition:

- The derivatives of the intensity function $f(x, y)$ are first calculated in each point.
- If necessary, the image is smoothed before taking the derivatives
- Then, the entries of the matrix $\left(f_{x}^{2}\right.$, etc. $)$ are obtained.
- Finally, each of the entries is smoothed (integrated) by Gaussian filter $w_{G}(r ; \sigma)$ of selected size σ.
- Often, a simple box (averaging) filter is used instead of the Gaussian.

Properties of the local structure matrix

Denoting in (1) the smoothing by $\widehat{f f}$, we have

$$
C_{s t r}=\left[\begin{array}{cc}
\widehat{f_{x}^{2}} & \widehat{f_{x} f_{y}} \\
\widehat{f_{x} f_{y}} & \widehat{f_{y}^{2}}
\end{array}\right]
$$

The local structure matrix $C_{s t r}$ is

- Symmetric

\Rightarrow It can be diagonalised by rotation of the coordinate axes. The diagonal entries will be the two eigenvalues λ_{1} and λ_{2} :

$$
C_{s t r}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

- Positive semi-definite

\Rightarrow The eigenvalues are nonnegative. Assume $\lambda_{1} \geq \lambda_{2} \geq 0$.

Basic observations:

- The eigenvectors encode edge directions, the eigenvectors edge magnitudes.
- A corner is identified by two strong edges $\Rightarrow A$ corner is a location where the smaller eigenvalue, λ_{2}, is large enough.
- Diagonalisation of $C_{s t r}$ means aligning the local coordinate axes with the two edge directions.
- Remark: Setting a threshold on $\min \left(f_{x}, f_{y}\right)$ to find corners would not work!

rotated edge

rotated corner

Meaning of diagonalisation of the structure matrix.

The geometric interpretation of λ_{1} and λ_{2} :

- For a perfectly uniform image: $C_{s t r}=0$ and $\lambda_{1}=\lambda_{2}=0$.
- For a perfectly black-and-white step edge: $\lambda_{1}>0, \lambda_{2}=0$, where the eigenvector associated with λ_{1} is orthogonal to the edge.
- For a corner of black square against a white background: $\lambda_{1} \geq \lambda_{2}>0$.
- The higher the contrast in that direction, the larger the eigenvalue

uniform image
$\lambda_{1}=\lambda_{2}=0$

ideal step edge $\lambda_{1}>0, \lambda_{2}=0$

ideal corner
$\lambda_{1} \geq \lambda_{2}>0$

The KLT corner detector has two parameters: the threshold on λ_{2}, denoted by $\lambda_{t h r}$, and the linear size of a square window (neighbourhood) D.

Algorithm 1: The KLT Corner Detector

1. Compute f_{x} and f_{y} over the entire image $f(x, y)$.
2. For each image point p :
(a) form the matrix $C_{\text {str }}$ over a $D \times D$ neighbourhood of p;
(b) compute λ_{2}, the smaller eigenvalue of $C_{s t r}$;
(c) if $\lambda_{2}>\lambda_{t h r}$, save p into a list, L.
3. Sort L in decreasing order of λ_{2}.
4. Scan the sorted list from top to bottom. For each current point, p, delete all points apperaring further in the list which belong to the neighbourhood of p.

The output is a list of feature points with the following properties

- In these points, $\lambda_{2}>\lambda_{t h r}$.
- The D-neighbourhoods of these points do not overlap.

Selection of the parameters $\lambda_{t h r}$ and D :

- The threshold $\lambda_{t h r}$ can be estimated from the histogram of λ_{2} : usually, there is an obvious valley near zero.
- Unfortunately, such valley is not always present
- There is no simple criterion for the window size D. Values between 2 and 10 are adequate in most practical cases.
- For large D, the detected corner tends to move away from its actual position
- Some corners which are close to each other may be lost

The Harris corner detector

The Harris corner detector (1988) appeared earlier than KLT. KLT is a different interpretation of the original Harris idea.

Harris defined a measure of corner strength:

$$
H(x, y)=\operatorname{det} C_{s t r}-\alpha\left(\operatorname{trace} C_{s t r}\right)^{2},
$$

where α is a parameter and $H \geq 0$ if $0 \leq \alpha \leq 0.25$.

A corner is detected when

$$
H(x, y)>H_{t h r}
$$

where $H_{t h r}$ is another parameter, a threshold on corner strength

Similar to the KLT, the Harris corner detector uses D-neighbourhoods to discard weak corners in the neighbourhood of a strong corner.

Example of corner detection by the KLT operator.

Parameter of Harris operator and relation to KLT

Assume as before that $\lambda_{1} \geq \lambda_{2} \geq 0$. Introduce $\lambda_{1}=\lambda, \lambda_{2}=\kappa \lambda, 0 \leq \kappa \leq 1$.
Using the relations between eigenvalues, determinant and trace of a matrix A

$$
\begin{aligned}
\operatorname{det} A & =\prod_{i} \lambda_{i} \\
\operatorname{trace} A & =\sum_{i} \lambda_{i},
\end{aligned}
$$

we obtain that

$$
H=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}=\lambda^{2}\left(\kappa-\alpha(1+\kappa)^{2}\right)
$$

Assuming that $H \geq 0$, we have

$$
0 \leq \alpha \leq \frac{\kappa}{(1+\kappa)^{2}} \leq 0.25 \quad \text { and, for small } \kappa, H \approx \lambda^{2}(\kappa-\alpha), \alpha \lesssim \kappa
$$

In the Harris operator, α plays a role similar to that of $\lambda_{t h r}$ in the KLT operator.

- Larger $\alpha \Rightarrow$ smaller $H \Rightarrow$ less sensitive detector: less corners detected.
- Smaller $\alpha \Rightarrow$ larger $H \Rightarrow$ more sensitive detector: more corners detected.

Usually, $H_{t h r}$ is set close to zero and fixed, while α is a variable parameter.

Corner detection by Harris operator: influence of $\alpha .\left(H_{t h r}=0.\right)$

KLT 40 corners

Harris $\alpha=0.2$

Comparison of the two operators.

Example of corner detection by the Harris operator.

Summary of corner detection

- The KLT and the Harris corner detectors are conceptually related
- Based on local structure matrix $C_{\text {str }}$
- Search for points where variations in two orthogonal directions are large
- Difference between the two detectors:
- KLT sets explicit threshold on the diagonalised $C_{s t r}$
- Harris sets implicit threshold via corner magnitude $H(x, y)$
- The KLT detector
- usually gives results which are closer to human perception of corners;
\circ is often used for motion tracking in the wide-spread KLT Tracker.
- The Harris detector
- provides good repeatability under varying rotation and illumination;
- if often used in stereo matching and image database retrieval.
- Both operators may detect interest points other than corners.

