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Lecture 6: Edge Detection

• Types of local image features

◦ Edges, lines, corners, blobs

• Principles of edge detection

• Criteria for good edge filters

• Gradient edge filters

• Canny edge detector

• Edge localisation

◦ Non-maxima suppression
◦ Hysteresis thresholding

• Zero-crossing edge detector
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Local image features

BlobEdge Line Corner

Basic image features.

• Edge: drastic change of intensity across object contour

• Line: narrow, elongated image region of approximately constant width and
intensity

• Corner: sharp turn of a contour

• Blob: compact image region of approximately constant intensity
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Edge detection

• Image edges do not necessarily coincide with physical edges

◦ Image edges are intensity discontinuities
◦ Physical edges are surface discontinuities
◦ Example: Edges of shadows are not surface discontinuities

• Importance of intensity edges: Human eye detects them ‘in hardware’, at the
initial level of visual processing.

ideal step edge blurred edge

Edge profiles.
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Principles of edge detection

original image
edge magnitude

Edge localisation

edge orientation
edge map
edge orientation

Edge filtering

Steps of edge detection.

• Edge filter responds to edges and yields

◦ Edge magnitude: strength of edge, a measure of local contrast
◦ Edge orientation

• Tasks of edge localisation (post-processing):

◦ Remove noisy edges
◦ Remove ‘phantom’ edges, obtain thin contours
◦ Obtain edge map: a binary edge image.

• Note: Noise smoothing may be applied before edge filtering.
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original image edge magnitude edge orientation edge map

Example of edge detection by 3 × 3 Prewitt operator.
Edge orientation is circular data; shown intensity-coded.

Intensity profiles along lower (left) and upper (right) lines drawn in original image
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edge

edge

direction
edge normal

orientation

Edge normal, edge direction and edge orientation.

• Edge normal: Direction of maximum intensity variation at edge point.

◦ Unit vector perpendicular to the edge

• Edge direction: Direction tangent to the contour

◦ Unit vector parallel to the edge
◦ Convention needed for unumbiguous definition: e.g., ’dark on the left’

• Also used: Edge orientation, which is circular data interpreted modulo π.
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Edge filters

Edge filters are high-pass filters using spatial derivatives of intensity function to

• enhance intensity variation across the edge

• suppress regions of constant intensity

The following operators are applied in edge filtering:

• Intensity gradient is vector composed of the first order partial derivatives:

∇f(x, y)
.
=

(

∂f

∂x
,
∂f

∂y

)

• Laplace operator is scalar composed of the second order partial derivatives:

∆f(x, y)
.
=

∂2f

∂x2
+

∂2f

∂y2
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2

f(x)

___
dx2

df__
dx

d  f

A signal and its first and second derivatives.

Edges are located at

• maxima of absolute value of first derivative

• zero-crossings of second derivative
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Criteria for good edge filters

1. No response to flat regions ⇒ Sum of mask values is zero:
∑

r,c w(r, c) = 0

2. Isotropy: Response must be independent of edge orientation

3. Good detection: Minimise the probabilities of

• detecting spurious edges caused by noise (false positives)
• missing real edges (false negatives)

4. Good localisation: Detected edges must be as close as possible to true edges.

5. Single response: Minimise number of false local maxima around true edge.

noisy edgestep edge response response
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original image isotropic edge filter anisotropic edge filter

Illustration to the isotropy criterion.

• The isotropic edge filter yields uniform edge magnitude for all directions.

• The anisotropic edge filter yields non-uniform magnitude. In this illustration,
the response depends on the edge orientation as follows:

◦ Directions 45◦ · k are slightly amplified
◦ Directions 90◦ · k are slightly suppressed

11

W2

W1

object

Illustration to the single response criterion.

• The same piece of contours is detected in window W1 and window W2.

⇒ ‘Phantom’ edges parallel to ‘true’ edges, thick contours

• The response depends on the overlap between the window and the contour.

• The multiple response is typical for all window-based detection tasks.
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Gradient edge filters

Assume that the intensity function f(x, y) is sufficiently smooth. The intensity
gradient is the following vector:

∇f(x, y)
.
=

(

∂f

∂x
,
∂f

∂y

)

=
(

fx, fy

)

The magnitude M(x, y) and the orientation Θ(x, y) of the gradient vector are
obtained as follows:

M(x, y) = ‖∇f(x, y)‖ =
√

f2
x + f2

y

Θ(x, y) = arctan
fx

fy

The gradient vector gives the direction and the magnitude of the fastest growth

of intensity.
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The meaning of the gradient vector

original image intensity surface thresholded image

edge normal

fastest growth

intensity surface

gradient =

edge
direction

level lines

Intensity surface of an edge and its gradient.
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Simple 3 × 3 gradient masks

• In discrete images, partial derivatives are approximated by finite differences.

• The following family of gradient masks are used to compute the components
of the gradient vector:

Gx Gy

1

p

−1 0 1
2−p 0 p − 2
−1 0 1

1

p

−1 2 − p −1
0 0 0
1 p − 2 1

• Different values of the parameter p result in different versions of the masks:

Prewitt Sobel Isotropic

p 3 4 2 +
√

2

◦ When p = 2 +
√

2, the mask weights reflect the proximity to the mask origin.
⇒ The operator becomes less sensitive to edge orientation.
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Constraining the gradient masks

The above family of gradient masks obeys the following constraints:

1. Mirror symetry with respect to (wrt) the edge normal:

Gx(1, c) = Gx(3, c) and similar for Gy

2. Antisymmetry wrt the edge orientation

Gx(r, 1) = −Gx(r, 3), Gx(r, 2) = 0 and similar for Gy

• requried for precise localisation of edges
• assumes antisymmetry of intensity profile of edge (sigmoid shape)

antisymmetry of edge profilemirror symmetry wrt edge normal
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3. No response to flat regions:
∑

r,c Gx(r, c) =
∑

r,c Gy(r, c) = 0.

• follows from the antisymmetry

4. Normalised response to ideal step edge of unit height: For such edge, the
output value should be 1.

Using these constraints, the above family of gradient masks can be derived from
a general unconstrained 3 × 3 mask: 9 free parameters reduce to 1.

The most frequently used are the Prewitt and the Sobel operators whose
X-masks are as follows:

Prewitt Sobel

1

3

−1 0 1
−1 0 1
−1 0 1

1

4

−1 0 1
−2 0 2
−1 0 1

• The Y -masks are obtained by 90◦ rotation of the X-masks.

• The Prewitt operator is the simplest and the fastest.
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The Canny edge detector

The Canny edge detector is optimal for noisy step edge under the following
assumptions:

• The edge filter is linear.

• The image noise is additive, white (uncorrelated) and Gaussian.

The optimality criterion used by Canny combines

• good detection and

• good localisation

To satisfy the single response criterion, two post-processing (edge localisation)
operations are used:

• Non-maxima suppression

• Hysteresis thresholding
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A practical approximation of the Canny filter

The original optimal edge filter is quite complicated. A simple practical
approximation is as follows:

1. Apply Gaussian filter obtaining smoothed image g(x, y) = f(x, y)∗wG(x, y; σ)

• The Gaussian parameter σ determines the size of the edge filter

2. Apply gradient operator ∇g(x, y) and calculate edge magnitude and
orientation.

The scale parameter σ is selected based on

• the desired level of detail: fine edges vs global edges;

• the noise level;

• the localisation-detection trade off: see template matching.
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An efficient implementation of the Canny filter

An efficient implementation uses

• the commutativity and associativity of linear filters:

∇
(

f(x, y) ∗ wG(x, y)
)

= ∇
(

wG(x, y) ∗ f(x, y)
)

= ∇
(

wG(x, y)
)

∗f(x, y)

• and the separability of the Gaussian filter:

wG(x, y) = wG(x) · wG(y).

As a result, the filter is implemented as a sequence of convolutions with 1D

masks.
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Edge localisation

• Input: edge magnitude M(x, y) and edge orientation Θ(x, y) in each pixel of
the image.

• Output: Binary edge map, with 1’s indicating edges, 0’s indicating no edges.

Localisation selects those maxima of M(x, y) that correspond to true edge pixels.

• Can be applied after any edge filter that computes a measure of edge strength

and provides edge orientation.

◦ Gradient: Canny, Prewitt
◦ Non-gradient: For example, Mérő and Vassy

• Includes the following operations:

◦ Non-maxima suppression to remove ‘phantom’ edges and, if possible, obtain
1-pixel wide contours

◦ Hysteresis thresholding to remove noisy maxima without breaking the
contours
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Non-maxima suppression

• Due to the multiple response, edge magnitude M(x, y) may contain wide ridges

around the local maxima.

• Non-maxima suppression removes the non-maxima pixels preserving the

connectivity of the contours.

Algorithm 1: Non-maxima suppression

1. From each position (x, y), step in the two directions perpendicular to edge
orientation Θ(x, y).

2. Denote the inital pixel (x, y) by C, the two neighbouring pixels in the
perpendicular directions by A and B.

3. If the M(A) > M(C) or M(B) > M(C), discard the pixel (x, y) by setting
M(x, y) = 0.
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M(C)>M(B)

M(C)>M(A)

normal
direction

pixel C

pixel B

pixel A

Illustration to the non-maxima suppression. Pixels A and B are deleted because
M(C) > M(A) and M(C) > M(B). Pixel C is not deleted.

edge magnitude intensity profile (resized) result of NMS

Thinning wide contours in edge magnitude images by non-maxima suppression.
The intensity profile along the indicated line is shown resized for better visibility.
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Hysteresis thresholding

• The output of the non-maxima suppression still contains noisy local maxima.

• Contrast (edge strength) may be different in different points of the contour.

⇒ Careful thresholding of M(x, y) is needed to remove these weak edges while
preserving the connectivity of the contours.

• Hysteresis thresholding receives the output of the non-maxima suppression,
MNMS(x, y).

• The algorithm uses 2 thresholds, Thigh and Tlow.

◦ A pixel (x, y) is called strong if MNMS(x, y) > Thigh.
◦ A pixel (x, y) is called weak if MNMS(x, y) ≤ Tlow.
◦ All other pixels are called candidate pixels.
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Algorithm 2: Hysteresis thresholding

1. In each position of (x, y), discard the pixel (x, y) if it is weak; output the pixel
if it is strong.

2. If the pixel is a candidate, follow the chain of connected local maxima in both
directions along the edge, as long as MNMS > Tlow.

3. If the starting candidate pixel (x, y) is connected to a strong pixel, output
this candidate pixel; otherwise, do not output the candidate pixel.
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C4

strong edge

C3

weak edge

candidate edge

C2

C1

Illustration to the hysteresis thresholding. The candidate edges C1 and C2 are
output, the candidate edges C3 and C4 are not.

original image edge magnitude 5, 20 20, 40

Examples of edge localisation with different hysteresis thresholds.
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Zero-crossing edge detector

2

f(x)

___

Double edge

Zero crossing

Blurred edgeSteep edge

__
dx
df

_
2

d  f

dx
-

00

00
+ +

+ +
-

--

Left: Principles of zero-crossing edge detector.
Right: Simple masks for detection of zero-crossings.
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Implementation of the zero crossing filter: Gaussian smoothing followed by
Laplacian filtering.

• Using commutativity and associativity of linear filters and rotation symmetry of
Gaussian filter, we obtain the convolution mask of the zero-crossing operator,
called Laplacian-of-Gaussian (LoG):

wZ(r) = C

(

r2

σ2
− 1

)

exp

{−r2

2σ2

}

◦ C: normalisation constant
◦ r2 = x2 + y2: square distance from centre of mask
◦ σ is scale parameter: the smaller the σ the finer the edges obtained

• Discrete zero-crossing mask: Threshold wZ(r) at a small level.

⇒ Larger mask obtained for larger σ: For example, when σ = 4 the size of the
mask is about 40 pixels.
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σ = 5 σ = 10

σ = 15 σ = 20

Shape of the Laplacian-of-Gaussian (LoG) filter for different σ.
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• Another, more efficient but approximate, implementation of the zero-crossing
filter is the difference of two separable Gaussian filters, called DoG.

• Localising the zero-crossings corresponds to edge localisation in gradient-type
edge detectors.

◦ For more precise localisation, one can locally approximate output of LoG filter
by facets (flat patches), then find zero-crossings analytically.

LoG absolute LoG zero DoG zero

Examples of edge detection by 15 × 15 LoG and DoG operators. ‘LoG absolute’ is
absolute value of filter output: dark lines are contours. ‘LoG zero’ was obtained

with removal of weak edges, ‘DoG zero’ without removal.
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Properties of zero crossing edge detector

• The continuous zero-crossing edge detector always gives closed contours.

◦ Reason: Cross-sections of continuous surface at zero level
◦ In principle, this may help in contour following
◦ In practice, many spurious loops appear

• Controlled operator size σ ⇒ Natural edge hierarchy within a scale-space.

◦ Edges may only merge or disappear at rougher scales (larger σ)
◦ This tree-like data structure facilitates structural analysis of image

• Does not provide edge orientation.

◦ Non-maxima suppression and hysteresis threshoding are not applicable
◦ Other ways of post-processing to remove unrealiable edges can be used
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Prewitt 3 × 3 Mérő-Vassy 7 × 7 LoG 21 × 21

Canny 3 × 3 Canny 7 × 7 Canny 25 × 25

Examples of edge detection by different operators. The LoG result was obtained
with removal of weak edges. Mérő-Vassy is a non-gradient edge detector.

32



Summary of edge detection

• 3 × 3 gradient operators (Prewitt, Sobel) are simple and fast. Used when

◦ Fine edges are only needed
◦ Noise level is low

• By varying the σ parameter, the Canny operator can be used

◦ to detect fine as well as rough edges
◦ at different noise levels

• All gradient operators

◦ provide edge orientation;
◦ need localisation: non-maxima suppression, hysteresis threshoding.

• The zero-crossing edge detector

◦ is supported by neurophysiological experiments;
◦ was popular in the 1980’s ;
◦ today, less frequently used in practice.
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