
Faculty of Informatics
Eötvös Loránd University

Budapest, Hungary

Basic Algorithms for Digital Image Analysis:

a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó
and Levente Hajder

http://visual.ipan.sztaki.hu

Lecture 5: Finding Patterns in Images

• Matching and correspondence in computer vision

• Template matching

◦ Similarity and dissimilarity measures
◦ Interior matching versus contour matching
◦ Invariance
◦ Distortion-tolerant matching
◦ Stable matching
◦ Fast implementations

2

Matching and correspondence in computer vision

Image matching: Finding correspondences between two or more images.

Basic tasks of computer vision related to matching:

1. Given images of a scene taken by different sensors, bring them into registration.

• This is called image registration.
• Typical example: Medical imaging
◦ Images obtained by sensors of different types are called modalities.

2. Given images of a scene taken at different times, find correspondences,
displacements, or changes.

• This is motion analysis.
• Typical example: Motion tracking.

3

3. Given images of a scene taken from different positions, find correspondent
points to obtain 3D information about the scene.

• This is stereopsis, or simply stereo.
◦ Matching provides disparity: the shift of a point between the two views
◦ By triangulation, disparity and baseline (distance between eyes) provide

depth: the 3D distance to the point.
• Generalised stereo is called 3D scene reconstruction from multiple views.

4. Find places in an image or on a contour where it matches a given pattern.

• Template matching: Pattern specified by template.
• Feature detection: Feature specified by description.

5. Match two contours for object recognition, measurement, or positioning.

• This is contour matching.

4



Key issues of matching:

• Invariance under imaging transformations

◦ spatial
◦ photometric (intensity)

• Sensitivity to noise and distortions

Considered in this course are:

• Tasks

◦ Task 4: Template matching and feature detection
◦ Task 5: Contour matching

• Transformations

◦ Spatial: 2D shift and rotation
◦ Photometric: Shift and scaling of intensity (linear)

5

Template matching

Compare a subimage (template) w(r′, c′) with an image f(r′, c′) for all possible
displacements (r, c).
In other words: Match w(r′, c′) against f(r + r′, c + c′) for all (r, c).

Measures of dissimilarity between image f and template w in (r, c):

D1 Sum of Square Differences (SSD):

D(r, c) =
∑

(r′,c′)∈W

(r+r′,c+c′)∈F

{

f(r + r′, c + c′) − w(r′, c′)
}2

• W : set of pixel positions in template w (template coordinates)
• F : set of pixel positions in image f (image coordinates)

D(r, c) is not invariant under the following transformations

• 2D rotation ⇒ Cannot find significantly rotated pattern
• Shift or scaling of intensity ⇒ Cannot cope with any varying illumination

6

D2 Intensity shift-corrected SSD:

δ(r, c) =
∑

(r′,c′)∈W

(r+r′,c+c′)∈F

{[

f(r + r′, c + c′) − f(r, c)
]

−
[

w(r′, c′) − w
]}2

• f(r, c): Average value of image in region covered by template
◦ computed in each position (r, c)

• w: Average value of template
◦ computed only once

δ(r, c) is a bit more sophisticated measure used to compensate for intensity
shift due to uneven illumination.

• Handles changes in average level of signal
• Cannot handle changes in amplitude of signal

7

Measures of similarity between image f and template w in position (r, c):

S1 Unnormalised cross-correlation (CC) of image f with template w:

Cun(r, c) =
∑

(r′,c′)∈W

(r+r′,c+c′)∈F

f(r + r′, c + c′) · w(r′, c′)

• We have already studied the properties of cross-correlation and convolution.

• Cun(r, c) is formally the same as filtering image f with mask w.
⇒ Our knowledge of filters is applicable, including normalisation, separability,

fast implementation, etc.

• Cun(r, c) is not invariant under intensity shift and scaling. When w > 0
and f is large, Cun(r, c) is large, independently from (dis)similarity between
w and f .
⇒ To compensate for this, a normalised version is used.

8



S2 Normalised cross-correlation (NCC), or correlation coefficient:

Cnr(r, c) =
1

√

Sf(r, c) · Sw

∑

[

f(r + r′, c + c′) − f(r, c)
]

·
[

w(r′, c′) − w
]

where

Sf(r, c) =
∑

[

f(r + r′, c + c′) − f(r, c)
]2

, Sw =
∑

[

w(r′, c′) − w
]2

and for simplicity
∑

denotes
∑

(r′,c′)∈W

(r+r′,c+c′)∈F

• Sf(r, c) is computed in each position (r, c), SW is computed in only once.
• Cnr(r, c) is invariant to any linear intensity transformation.
• If the average values are not subtracted, Cnr(r, c) is only intensity scale-

invariant (scale-corrected).

9

S3 Modified normalised cross-correlation (MNCC):

Cmnr(r, c) =
1

Sf(r, c) + Sw

∑

[

f(r + r′, c + c′) − f(r, c)
]

·
[

w(r′, c′) − w
]

where as before

Sf(r, c) =
∑

[

f(r + r′, c + c′) − f(r, c)
]2

, Sw =
∑

[

w(r′, c′) − w
]2

• Cmnr is another normalisation:

Cnr is divided by
√

Sf(r, c) · Sw

Cmnr is divided by Sf(r, c) + Sw

• Cmnr is used instead of the standard Cnr to avoid the numerically unstable
division by a small number when Sf(r, c) is small. (Small image variation.)

• Formally, Cmnr is only shift-corrected. In practice, Cmnr is reasonably
insensitive to intensity scaling as well, since Sw is constant and Sf(r, c) + Sw

is roughly proportional to Sf(r, c).

10

Template matching: Varying r and c, search for locations of high similarity
Cun(r, c), Cnr(r, c), Cmnr(r, c), or low dissimilarity D(r, c), δ(r, c).

Left image Template, zoomed Right image

NCC image NCC surface SDD image SDD surface

Examples of matching in stereo pair. Pattern from left image is searched in right
image. NCC is Normalised Cross-Correlation, SSD is Sum of Square Differences.

11

Interior matching versus contour matching

template input image output of CC output of NCC
0 0 0
1 1 1
0 0 0

0 0 0
1 1 1
0 0 0

1 2 3 2 1 1.0 1.4 1.7 1.4 1.0

1 1 1
1 1 1
1 1 1

1 2 3 2 1
1 2 3 2 1
1 2 3 2 1

1.0 1.2 1.0
1.0

1.0 1.2 1.0

0 1 0
0 1 0
0 1 0

1 1 1
1 1 1
1 1 1

1 1 1
1 0 1
1 1 1

1 2 3 2 1
1 1 2 1 1
1 2 3 2 1

1.2 1.3 1.2

1.2 1.3 1.2

Numerical examples of matching by unnormalised (CC) and normalised (NCC)
cross-correlations. In output, values below 1 are set to 0 and not shown.

12



Observation in the numerical example: The perfect match value (1.7) is not much
better than the near misses in position and shape.

• The match is not sharp.

Matching of the outlines yields sharper matches:

input image template output of NCC

1 1 1
1 1 1
1 1 1

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

1.2
1.3 2.0 1.3

1.2 2.0 3.0 2.0 1.2
1.3 2.0 1.3

1.2

1 1 1
1 0 1
1 1 1

0 0 0 0 0
0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
0 0 0 0 0

1.3
1.4

1.3 1.4 2.8 1.4 1.3
1.4
1.3

13

Trade-off between localisation accuracy and reliability of matching

• Matching the contours: faster, yields sharp matches, but sensitive to distortions;

• Matching the interior: slower and less sharp, but more robust.

Contours matching versus interior matching. Template: Dashed rectangle.
Object: Solid line. Circles: Overlapping points of contours.

• Left: Small shift of template results in drastic decrease of contour overlap and
negligible descrease of area overlap.

⇒ Contour matching is sharper.

• Right: Distortion of pattern has a similar effect.

⇒ Contour matching is less robust.

14

Critical issues in template matching

• Sensitivity to changes in size and rotation

• Sensitivity to pattern distortion

◦ For example, because of varying viewing angle

• ‘Noisy’ matches: Unexpected configurations may occur that produce high
matching values

• Heavy computational load

15

Handling variations in size and orientation

Options:

• Normalisation: Transform image to standard size and orientation

◦ Works only if there is no size or orientation variation within the image
◦ Requires definition of orientation

• Adaptivity: Spatially scale and rotate the template in each position, select the
best matching scale and rotation

◦ Very slow if number of scales and rotations is large
⇒ Used only for small number of scales and rotations

• Alternative solution: Use scale and rotation invariant description

◦ Compare descriptions instead of patterns

16



AA
A
A

A
A

template

A
A

A
AA

original image normalised image

Normalising an image for size and orientation.

• The letter A in the top right corner differs in size and orientation.

⇒ This letter will not match.

• The other four letters will match.

• How to define image orientation?

17

Distortion-tolerant matching

Use flexible templates composed of spatially connected subtemplates with
flexible links (‘springs’).

• The springs allow for a moderate spatial variation of the template.

◦ A cost function is introduced to penalise large variations
⇒ The larger the variation the larger the penalty

• Works well when the subtemplates are characteristic enough for reliable matching.

Representing a face template as a set of flexibly connected subtemplates.

18

Matching segmented patterns

Matching two patterns by segmenting them into regions.

• Segment patterns into regions and find correspondences by comparing region
properties.

◦ A distance measure between properties of regions should be defined.

• This solution works well when the segmentation is reliable.

19

Algorithm 1: Stable Matching of Two Images

1. Compute distance matrix Dij; i: ith region of image 1, j: jth region of image
2.

2. Calculate forward matching matrix Cij: Cij = 1 if Dij < Dik for all k 6= j;
otherwise, Cij = 0.

3. Calculate backward matching matrix Bij: Bij = 1 if Dij < Dkj for all k 6= i;
otherwise, Bij = 0.

4. Match regions i and j if CijBij = 1.

5. Remove established correspondences from Dij.

6. Iterate until no further matching is possible.

20



Comments to the Stable Matching algorithm:

• The backward matching (steps 2–4) is a consistency check.

⇒ This is a standard way to discard noisy (unreliable or erroneous) matches

• The iterative procedure is based on an algorithm for the Stable Marriage
Problem.

left image right image original ME consistent ME

Matching a stereo pair in presence of occlusion. ME is the matching error.
The consistency check removes wrong matches due to occlusion.

21

Fast impementations of matching

• Work with local features of images and templates rather that the patterns
themselves

◦ For example: Edges, contours
◦ Useful for sparse and reliable features
◦ Caution: Remember sensitivity to distortions!

• For large templates (> 13 × 13 pixels), use implementation of cross-correlation
via Fast Fourier Transform (FFT):

f ⊗ w = IFFT
[

FFT
[

f(x, y)
]∗

· FFT
[

w(x, y)
]

]

,

where IFFT is the inverse FFT and X∗ is the complex conjugate of X.

◦ Needs O(N2 log N) operations for N × N images
◦ Straightforward implementation needs O(N4) operations

22

Another solution: Use a fast procedure to

1. Select match candidates and reject mismatches rapidly, then

2. Test the selected candidates

Options for fast selection and rejection:

• Use a coarsely spaced grid of template positions, then rectify the candidates.

◦ This is a coarse-to-fine sampling method for the cross-correlation function
◦ It works if peaks of cross-correlation are smooth and broad (no spikes).

• Compute simple properties of template and image region. Reject region if its
properties differ from properties of the template.

• Use subtemplates to reject a mismatch rapidly when a subtemplate does not
match.

• If a cumulative measure of mismatch is used, reject a candidate when the
mismatch exceeds a preset threshold.

23


