Faculty of Informatics Eötvös Loránd University Budapest, Hungary

Basic Algorithms for Digital Image Analysis:

a course

Dmitrij Csetverikov

with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi, Zsolt Jankó and Levente Hajder

http://visual.ipan.sztaki.hu

Lecture 3: Filtering I

Image enhancement by neighbourhood processing

- Basic types of neighbourhood operators
- Convolution and correlation
- Types of noise and noise filtering
- Linear smoothing filters
 - mean filter and box filter
 - Gaussian filter
- Nonlinear median filter

2

Basic types of neighbourhood operators

Output value in image point $(\boldsymbol{x},\boldsymbol{y})$ is determined by pixels belonging to a neighbourhood of $(\boldsymbol{x},\boldsymbol{y})$:

$$g(x,y) = T[f(x,y)]$$

- f(x,y): input image; g(x,y): processed (output) image;
- T: operator on f, defined over some neighbourhood of (x, y).

A 3×3 neighbourhood (window) about a point (x, y) in an image.

Non-recursive and recursive neighbourhood operators

Non-recursive neighbourhood operator:

- Output is only a function of input image neighbourhood.
- Output is separated from input: Input is not modified during operation.
- Action is limited to the neighbourhood.

Recursive neighbourhood operator:

- Output depends in part on previously generated output values.
- Output is **not** separated from input: Input is modified during operation.
- Action extends beyond the neighbourhood.
- Useful but complicated: Not considered in this course.

From now on, 'operator' means 'non-recursive operator'.

3

Definition:

$$g(r,c) = \phi_{gnr}[r,c,f(r',c'):(r',c') \in N(r,c)]$$

- f(r,c) is input image, g(r,c) output image
- N(r,c) is a **neighbourhood** of (r,c)
- (r',c') are local coordinates within N(r,c)
- $f(r',c'): (r',c') \in N(r,c)$ is a list of pixel values collected in N(r,c)
 - $\circ\,$ scan N(r,c) in a certain order; $\circ\,$ for each $(r',c')\in N(r,c),$ pick f(r',c') and place into the list.

5

Shift-invariant, or position-invariant operator ϕ_{inv}

Applied uniformly on the image. Operation does not depend on position:

$$g(r,c) = \phi_{inv}[f(r',c') : (r',c') \in N(r,c)]$$

Neighbourhood ${\cal N}$ is shift-invariant:

If
$$(r',c')\in N(r,c)$$
 , then for all (u,v) , $(r'-u,c'-v)\in N(r-u,c-v)$

Same result on same neighbourhood, independently of position $(\boldsymbol{r},\boldsymbol{c}).$

Basic properties of shift-invariant operators:

- They commute with image translation operators.
- Compositions of shift-invariant operators are shift-invariant.

In general, ϕ_{gnr} may

- depend on position (r, c) within input image:
 - $\circ\,$ neighbourhood N(r,c) may depend on (r,c)
 - $\circ\,$ parameters of function that computes the output value may depend on (r,c)
- be **nonlinear**
 - \circ linear operator A:

$$A(\alpha p + \beta q) = \alpha A p + \beta A q$$

6

Linear operators and cross-correlation

Position-dependent linear operator is a linear combination of input values

$$g(r,c) = \sum_{(r',c')\in N(r,c)} f(r',c')\cdot w(r',c',r,c)$$

where the coefficients (weights) w(r', c', r, c) may depend on position (r, c).

Linear shift-invariant operator is a fixed linear combination of input pixels. Both neighborhood and weights are shift-invariant:

$$g(r,c) = \sum_{\substack{(r',c') \in W \\ (r+r',c+c') \in F}} f(r+r',c+c') \cdot w(r',c')$$

- W: set of pixel positions in neighborhood (local coordinates)
- F: set of pixel positions in image f (image coordinates)

The above operation is called **cross-correlation** of f with w:

 $g = f \otimes w$

The weight function w is called the **kernel** or the **mask of weights**.

1	1	1			1]		1		1	1	1	1	2	1
1	1	1		1	2	1		1	4	1	1	2	1	2	4	2
1	1	1			1				1		1	1	1	1	2	1
(a) $\frac{1}{9}$			(b) $\frac{1}{6}$				(c) $\frac{1}{8}$			(d) $\frac{1}{10}$			(e) $\frac{1}{16}$			
			_				-									

Examples of 3×3 masks used for noise cleaning.

- The mask (a) is called the 3×3 box filter, or mean filter with uniform weights.
- In the other 4 masks, the weights decrease with the distance from the center.
- The normalising factors are the sums of the coefficients.

Application of a filter to pixels (1,1) and (1,2) of an image. '-' is the border.

Examples of 5×5 masks used for noise cleaning.

• The mask (a) comes from repeated application of 3×3 box filter:

1	1	1		1	1	1
1	1	1	\otimes	1	1	1
1	1	1		1	1	1

- The mask (b) is a discrete version of $8 (r^2 + c^2)$:
 - $\circ\,$ The weights decrease with the distance from the center.

10

Problem: No regular way to assign result to border pixels (border effect).

- For a $D_W \times D_W$ size mask (odd D_W), width of unfilled border is $\lfloor D_W/2 \rfloor$.
- The imprecise margin grows as one applies a sequence of filters.

Options:

- Fill with zeros. (Technically simple.)
 - $\circ~$ Can introduce strong artificial edges
 - $\circ~$ Can disturb grey-scale normalisation (rescaling to [0,255])
- Fill with the mean value of the output image. (Simple.)
 - Less strong artificial edges
 - $\circ~$ Does not influence grey-scale normalisation
- Fill with the closest computed value. (A bit more difficult.)
- Treat the input image as **periodic** (like a cylinder) and compute result for all pixels. (More difficult.)

Convolution and correlation

Convolution of image f with kernel w:

$$(f * w)(r, c) = \sum_{\substack{(r', c') \in W \\ (r-r', c-c') \in F}} f(r - r', c - c') \cdot w(r', c')$$

Convolution is closely related to correlation:

- f(r-r', c-c') in convolution
- f(r + r', c + c') in correlation
- In other words, the neighbourhood (window) W is scanned in the reverse order.

Definition: f^{\sim} is the **reflection** of f if

$$f^{\sim}(r,c) = f(-r,-c)$$

13

Types of noise and noise filtering

The following types of noise are frequent:

• Additive picture-independent channel (transmission) noise:

$$g(x,y) = f(x,y) + v(x,y)$$

where f(x,y) is input picture, g(x,y) output picture, v(x,y) noise.

• Uncorrelated multiplicative noise (e.g., TV raster lines):

$$g(x,y) = f(x,y) \cdot v(x,y)$$

• Quantisation noise (error):

$$q_{noise}(x,y) = p_{quant}(x,y) - p_{orig}(x,y)$$

• Salt-and-pepper: Pointwise, uncorrelated random noise.

Correlation and convolution are related as follows:

 $f\otimes w = f \ast w^{\sim}$

Correlation is convolution by the reflected mask. Since most masks are reflection-symmetric, there is **no major difference** between the two operations.

Other basic properties of convolution:

- 1. Commutative: w * v = v * w (linear operations, order is arbitrary)
- 2. Associative: (f * w) * v = f * (w * v)
- 3. Distributive: (f+g) * w = f * w + g * w
- 4. Homogeneous: $(\alpha f) * w = \alpha (f * w)$ for any constant α
- 5. Reflection: $(w * v)^{\sim} = w^{\sim} * v^{\sim}$

Here f and g are images. (w * v) means that the mask w is treated as image and convolved with v. The result is a **larger mask**.

14

- Image enhancement often means 'heuristic' image restoration.
 - no explicit noise model assumed
- However, different filters are best suitable for different types of noise. For example,
 - mean filter for additive picture-independent, zero mean noise;
 median filter for salt-and-pepper noise.
- \Rightarrow Analysis of noise is desirable.
- Elimination of small groups of noisy pixels is easier than that of larger groups:
 - When noise-free pixels in a neighborhood form a majority, it is easer to estimate the noise-free value.

Linear filters: mean, box, Gaussian

Linear filters are convolutions with different masks of weights.

• Mean filter is a spatial averaging (smoothing) filter with non-negative weights whose sum is equal to 1:

$$0 \le w_{mean}(r,c) \le 1, \quad \sum_{r,c} w_{mean}(r,c) = 1$$

- In practice: Use integer weights, then normalise
- Box filter is a mean filter with uniform weights. For a $(2M + 1) \times (2N + 1)$ neighborhood (window)

$$g(r,c) = \frac{1}{(2M+1) \times (2N+1)} \sum_{r'=-M}^{M} \sum_{c'=N}^{N} f(r+r',c+c')$$

Shape of the Gaussian filter for different σ .

Another important averaging filter is the Gaussian filter, with the weight matrix given by

$$w_G(r,c) = \frac{1}{S_G} \exp\left\{-\frac{r^2 + c^2}{2\sigma^2}\right\}$$

for all $(r,c) \in W$, where

$$S_G = \sum_{(r,c)\in W} \exp\left\{-\frac{r^2 + c^2}{2\sigma^2}\right\}$$

• The Gaussian filter: Shape of 2D normal distribution (bell-like)

 \circ when discretised, $w_G(r,c)$ is cut at a small level $\circ \sigma$ controls **filter size**: larger σ results in a larger filter

- **Rotation-symmetric**: $w_G(r,c)$ only depends on distance from center $d^2 =$ $r^2 + c^2$.
- Separable: $w_G(r,c) = w_G(r) \cdot w_G(c)$.
 - fast implementation possible

Spatial averaging is used for:

- Noise filtering
- Low-pass filtering (smoothing, removing fine details)
- **Subsampling** (going to lower resolution)
 - Average, then decimate (discard rows, columns)
- Computing scale-space representation of an image as a sequence of Gaussianfiltered images obtained with varying σ .

Noise reduction capability of the **box filter**:

- For zero-mean white noise, noise power is reduced by a factor of the window size (area) N_W .
 - 'Positive' and 'negative' noise values nullify each other.
- Noise reduction by box filter involves decrease of contrast.

Other basic properties of the mean filter:

- Blurs edges, flattens peaks: the larger the filter the stronger the smoothing.
- Results in a grey-level range which is within the original range.
- May produce new grey levels that did not exist in the original image.
 - $\circ\,$ For example, mean filtering of a binary image results in a greyscale image.
- **Outliers** (strongly deviating values) **can bias the result** by shifting the mean value significantly.

Number of operations required by the box filter

- Direct implementation: $O(N \cdot N_W)$ (N is image size.)
- Run filter implementation: O(N) (Discussed later.)

21

Properties of the median:

• Calculating the median is a **non-linear** operation: For two sequences P and Q,

 $Med(\alpha P) = \alpha Med(P)$ but $Med(P+Q) \neq Med(P) + Med(Q)$

- Selecting the median can be considered as a **voting procedure**: the median is selected from a majority.
- Median is a **robust statistic**: A few outliers do not bias the result.
 - breakdown point 50%
- Consider the numbers as points on X. The sum of the distances from the median to the other points is minimal for any 1D set of points.
 - $\circ\,$ In other words, the median is the $innermost\,$ point of a set.
 - $\circ~$ This property is **equivalent** to the definition of the median.
 - $\circ~$ It is used to extend the notion of median to higher dimensions and vectors.

Nonlinear median filter

The output of the median filter is the median value of the pixels in the window W:

- Sort (rank) the pixels by their intensity.
- Select the pixel which is in the **middle position** of the sorted sequence.
 - $\circ~$ Usually, the size of W is odd: $3\times3,~5\times5,$ etc.

Example: if the 9 pixel values in a 3×3 size window are

(1, 1, 3, 2, 5, 4, 4, 12, 11)

then the ordered sequence is

```
(1, 1, 2, 3, 4, 4, 5, 11, 12)
```

and the median value is **4**.

22

Properties of the median filter:

- Useful in removing **isolated noise pixels** (like salt-and-pepper) while preserving the spatial resolution.
 - Does not blur edges.
- Removes thin lines when filter size exceeds twice the line width.
 - $\circ~$ Then background pixels form a majority, and median comes from background.
- Rounds off corners.
- Number of operations required:
 - Direct implementation: $O(N \cdot N_W \cdot \log N_W)$
 - \circ Run filter implementation: $O(N \cdot \log N_W)$
- Vector median filters are used to enhance vector fields.
 - \circ For example, remove isolated vectors that are incompatible with the surrounding vectors.

The mean and the median filtering of a step edge and a line. The line is removed when the median filter size exceeds twice the line width.

Comparison of the median and the box filters for a bilevel image.

Original image

Symmetr. box 5×5

Box filter 3×3

Box filter 5×5

Comparison of the median and the box filters for a greyscale image corrupted by the salt-and-pepper noise. The images are gray-scale normalised.